JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November - 2015

MATHEMATICS-III

(Common to EEE, ECE, EIE, AGE, ETM)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

	Each question carries 10 marks and may have a, b, c as sub questions	
	PART- A	(25 Marks)
1.a)	Determine the nature of the point $x=0$ for the equation	
i	$x^{2}(x^{2}+1)y''+(x^{2}-1)y'+2y=0.$	[2M]
b)	Find the series solution of the equation $y'' - y = 0$.	[3M]
c)	Express $2 - 3x + 4x^2$ in terms of Legendre polynomial.	[2M]
d)	Express $J_3(x)$ in terms of J_0 and J_1 .	[3M]
e)	Prove that $f(z) = \overline{z}$ is not analytic at any point.	[2M]
1 f)	Show that the function $f(z) = \sin x \cosh y + i \cos x \sinh y$ is continuous	s as well as
-/	analytic every where.	[3M]
g)	State the Cauchy's Residue theorem.	[2M]
h)	Expand $\log z$ by Taylor's series about $z = 1$.	[3M]
i)	Define conformal transformation.	[2M]
j)	Find the points at which $w = \cosh z$ is not conformal.	[3M]
	PART-B	(50 Marks)
2.a)	Obtain the series solution of the equation $y'' + xy' + y = 0$,
2.a)	Obtain the series solution of the equation $y'' + xy' + y = 0$ Find the series solution of $4xy'' + 2y' + y = 0$.	[4+6]
2.a)	Obtain the series solution of the equation $y'' + xy' + y = 0$ Find the series solution of $4xy'' + 2y' + y = 0$.	
b)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR	
b) 3.a)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR Solve in series the equation $y'' + xy = 0$	[4+6]
b)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR	[4+6]
3.a) b)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR Solve in series the equation $y'' + xy = 0$	[4+6]
b) 3.a)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR Solve in series the equation $y'' + xy = 0$ Solve in series the equation $(1 - x^2) - 2xy + n(n+1)y = 0$ about $x = 0$.	[4+6]
3.a) b) 4.a)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR Solve in series the equation $y'' + xy = 0$ Solve in series the equation $(1 - x^2) - 2xy + n(n+1)y = 0$ about $x = 0$. Prove that $nP_n = (2n - 1) \times P_{n-1} - (n - 1) P_{n-2}$, $n \ge 2$	[4+6]
3.a) b) 4.a) b)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR Solve in series the equation $y'' + xy = 0$ Solve in series the equation $(1 - x^2) - 2xy + n(n+1)y = 0$ about $x = 0$. Prove that $nP_n = (2n - 1) \times P_{n-1} - (n - 1) P_{n-2}$, $n \ge 2$ State and prove generating function of Bessel's function. OR	[4+6]
3.a) b) 4.a)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR Solve in series the equation $y'' + xy = 0$ Solve in series the equation $(1 - x^2) - 2xy + n(n+1)y = 0$ about $x = 0$. Prove that $nP_n = (2n - 1) \times P_{n-1} - (n - 1) P_{n-2}$, $n \ge 2$ State and prove generating function of Bessel's function. OR Prove that $\int_{-1}^{1} P_n(x) P_m(x) dx = 0$, if $m \ne n$, $2/(2n+1)$ if $m = n$.	[4+6]
3.a) b) 4.a) b)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR Solve in series the equation $y'' + xy = 0$ Solve in series the equation $(1 - x^2) - 2xy + n(n+1)y = 0$ about $x = 0$. Prove that $nP_n = (2n - 1) \times P_{n-1} - (n - 1) P_{n-2}$, $n \ge 2$ State and prove generating function of Bessel's function. OR	[4+6]
b)3.a)b)4.a)b)5.a)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR Solve in series the equation $y'' + xy = 0$ Solve in series the equation $(1 - x^2) - 2xy + n(n+1)y = 0$ about $x = 0$. Prove that $nP_n = (2n - 1) \times P_{n-1} - (n - 1) P_{n-2}$, $n \ge 2$ State and prove generating function of Bessel's function. OR Prove that $\int_{-1}^{1} P_n(x) P_m(x) dx = 0$, if $m \ne n$, $2/(2n+1)$ if $m = n$. Prove that $J_0^2 + 2(J_1^2 + J_2^2 + J_3^2 +) = 1$.	[4+6] [4+6] [5+5]
b)3.a)b)4.a)b)5.a)	Find the series solution of $4x y'' + 2 y' + y = 0$. OR Solve in series the equation $y'' + xy = 0$ Solve in series the equation $(1 - x^2) - 2xy + n(n+1)y = 0$ about $x = 0$. Prove that $nP_n = (2n - 1) \times P_{n-1} - (n - 1) P_{n-2}$, $n \ge 2$ State and prove generating function of Bessel's function. OR Prove that $\int_{-1}^{1} P_n(x) P_m(x) dx = 0$, if $m \ne n$, $2/(2n+1)$ if $m = n$.	[4+6] [4+6] [5+5]

OR

7.a) State and prove Cauchy's integral theorem.

b) Evaluate using Cauchy's integral formula $\int_{c} \frac{e^{2z}}{(z-1)(z-2)} dz$, where C is the circle |z|=3. [5+5]

- 8.a) Express $f(z) = \frac{z}{(z-1)(z-3)}$ in series of positive and negative powers of (z-1).
 - b) Evaluate $\int_{0}^{2\pi} \frac{1}{(5-3\cos\theta)} d\theta$ using residue theorem. [5+5]

OR

- 9.a) Give two Laurent's series expansions in powers of z for $f(z) = \frac{1}{(1-z)z^2}$ and specify the region in which these expansions are valid.
 - b) Evaluate $\int_C \frac{z^2 + 2z 2}{z(z 4)(z 1)} dz$ where C is |z| = 1.5. [5+5]
- 10.a) Under the transformation w = 1/z find the image of the circle |z 2i| = 2.
 - b) Find the bilinear transformation which maps the points (-1,0,1) into the points (0, i, 3i) [5+5]

OR

- 11.a) Find the image of the region in the z-plane between the line y = 0 and $y = \pi/2$ Under the transformation $w = e^z$.
 - b) Show the bilinear transformation preserves the cross ratio. [5+5]

---00000---