Code No: 113AH

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, December-2014 MATHEMATICS-III

(Common to EEE, ECE, EIE, AGE)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part- A (25 Marks)

1.a) Find the complementary function of
$$x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 12y = x^3 \log x$$
. [2M]

b) Find the singular points of the differential equation:

$$x^{3}(x-1)\frac{d^{2}y}{dx^{2}} + 2(x-1)\frac{dy}{dx} + y = 0.$$
 [3M]

c) Write the value of $J_{-\frac{1}{2}}(x)$. [2M]

d) Obtain the value of $P_3(x)$. [3M]

e) Determine the region in the z-plane represented by $\frac{\pi}{3} < \text{amp}(z) < \frac{\pi}{2}$. [2M]

f) State Cauchy's integral theorem. [3M]

g) Define an essential singularity [2M]

h) Expand **cosz** in Taylor's series about the point $z = \frac{\pi}{2}$. [3M]

i) Define conformal transformation. [2M]

j) Find the invariant points of the transformation $w = \frac{(z-1)}{(z+1)}$. [3M]

Part-B (50 Marks)

2.a) Solve
$$(x+a)^2 \frac{d^2 y}{dx^2} - 4(x+a)\frac{dy}{dx} + 6y = x$$
.

b) Solve the equation $y'' + x^2y = 0$ in series.

OR

3.a) Solve
$$\frac{d^2y}{dx^2} - \frac{1}{x}\frac{dy}{dx} + \frac{y}{x^2} = \frac{\log x}{x^2}$$
.

b) Solve the equation $3x \frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} - y = 0$ in power series.

4.a) Express $f(x) = x^4 + 3x^3 - x^2 + 5x - 2$ in terms of Legendre polynomials.

b) Prove that $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$.

c) Prove that $\frac{d}{dx}J_0(x) = -J_1(x)$.

- 5.a) State and prove the generating function for $P_n(x)$.
 - b) Prove that $\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$.
 - c) If $J_{n+1}(x) = \frac{2}{x}J_n(x) J_0(x)$, then find the value of n.
- 6.a) Show that the real and imaginary parts of an analytic function are harmonic.
 - Evaluate $\int_C |z| dz$, where C is the contour consisting of the straight line from z = -i to z = i.
 - c) Evaluate $\oint_C \frac{e^z}{(z+1)^2} dz$, where C is |z-1| = 3.

OR

- 7.a) Show that the function $f(z) = \overline{z}$ is not an analytic function at any point.
 - b) If the potential function is $\log(x^2 + y^2)$, find the flux function and the complex potential function.
 - e) Evaluate $\int_C \frac{z^2 z + 1}{z 1} dz$, where C is the circle $|z| = \frac{1}{2}$.
- 8.a) Find the Laurent's series expansion of $f(z) = \frac{7z^2 9z 18}{z^3 9z}$ in the regions |z| > 3 and 0 < |z 3| < 3.
 - b) Apply the calculus of residues to prove that $\int_{-\pi}^{\pi} \frac{dx}{x^3 + 1} = \frac{\pi}{\sqrt{2}}.$

OR

- 9.a) State and prove the Residue theorem.
 - b) Evaluate $\int_0^\infty \frac{\cos ax}{x^2 + 1} dx.$
- 10.a) Find the bilinear transformation which maps 1, i, -1 to 2, i, -2 respectively. Find the fixed and critical points of the transformation.
 - b) Show that under the transformation $w = \frac{1}{2}$, a circle $x^2 + y^2 6x = 0$ is transformed into a straight line in the w-plane.

OR

- 11.a) Show that the condition, for transformation $w = \frac{(az+b)}{\sqrt{(cz+d)}}$ to make the circle |w| = 1 correspond to a straight line in the z-plane is |a| = |c|.
 - b) Discuss the transformation $w = z^2$.