R16 Code No: 133BK JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2018 NETWORK THEORY (Electrical and Electronics Engineering) Time: 3 Hours Max. Marks: 75 Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART- A (25 Marks) 1.a) What is cut set matrix? Define: i) Flux ii) Reluctance iii) M.M.F. b) [2] What is balanced supply and balanced load? [3] c) What is the significance of phase sequence? [2] d) Sketch the DC response of RL circuit and response curve. [3] e) Define time constant of R-C circuit excited d.c source. f) [2]Define Port and Two-port network. [3] g) Two two-port networks with transmission parameters A₁, B₁, C₁, D₁ and A₂, B₂, C₂, D₂ [2] h) respectively are cascaded. What is the transmission parameter matrix of the cascaded What is the function of a band elimination filter? [3] i) [2] What is a high pass filter? In what respects it is different from a low pass filter? j) [3] Explain self inductance and mutual inductance. (50 Marks) 2.a) Find the value of XL in the coupled network shown in figure 1 for making it series b) jXL k = 0.1capacitor - j 40 Figure: 1

AG AG AG AG AG AG A

AG AG AG AG AG AG AG

Λ.		A (^	A (^	^	A 7	A	A -	Α
/-/\	,						AG	
Derive the equations to find the inductances and capacitances of a constant K high passfilter. OR 11. Explain low pass filters. Discuss the design considerations of K type-low pass filters. [10]								
	j''. /	Explain low	pass filters. Di	scuss the design of	considerations of	K type-low pass	filters.\ [/10]	A
00000								
	; } }	16	AG	AG	AG	AG	AG	A
ÅG		G	AG	AG	AG	AG	AG	A
AG	A	G	AG	AG	AG	ĄĞ	AG	Д
AG	A	G	AG	AG	AG	AG	AG	A
AG	Ą	<u> </u>	AG	AG	AG	AG	AG	A
AG	<u>A</u> () J /	4G	AG	AG	AG	AG	A