

AG	AG AG AG AG AG	/
Cod	le No: 125AG JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD	
	B. Tech III Year I Semester Examinations, May - 2018 POWER SYSTEMS-II Electrical and Electronics Engineering) Max. Marks: 75	/
Note	Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries	
AG	10 marks and may have a, b, c as sub questions. PART A (25 Marks)	/
1.a) b) c) d) e) f) g) h)	List different types of conductors. Briefly explain about the effect of ground on capacitance. What are ABCD constants in a medium transmission line? Classify the transmission lines based on the voltage. What is the sketch effect? Distinguish between reflected and refracted waves? State different types of insulators. [2] Define string efficiency. What are the various methods to improve string efficiency?	/
	What are the different types of cables? What are the advantages of cables compared to overhead transmission lines? PART - B [3] [2] [3] [6] [7] [8] [9] [1] [1] [1] [2] [3] [4] [5] [6] [6] [6] [7] [7] [8]	ß
	(50 Marks)	
2.a)	A single phase, two wire transmission line 20km long, is made up of round conductors each 0.9cm in diameter, separated from each other by 45cm. Calculate the equivalent diameter of a fictitious hollow, thin-walled conductor having the same inductance as the original line. What is the value of this inductance? Briefly discuss the various types of conductor material used for over head transmission lines.	/
3.a) b)	OR Derive the inductance of 2-wire transmission line. Derive the expression for capacitance of three phase transmission line with asymmetrical spacing. [5+5]	
b)	What is an equivalent H circuit model of long line? Derive expression for parameters of this circuit in terms of line parameters. A 3 phase, 50Hz, 100km long transmission line delivers a load of 20000KW at 110KV at 0.9 power factor lagging. The copper conductors of the line are 1.2 cm in diameter and are spaced equilaterally, so that the distance between them is 2 m. Using nominal π method, calculate the sending end voltage, current, power factor, regulation and	/
-// $/$ $-$	efficiency of the line. Neglect the leakage. $\land \land \land$	j

(

AG	AG AC		AG	AG	AG	/
5.a)	A single phase over head 11kV at 0.8 P.F lag. The 5 ohm phase. Determine Discuss the propagation of Give brief about power lo	transmission line is a line resistance and i) Source voltage ii) of surges in transmiss	loop reactance o Percentage regula	f the line are 3 of	ohm and	L
7.a)	Determine the auxiliary of having resistance, inductant 0.009 µF respectively. What is a travelling way	constants of a 3-pha ance and capacitance. OR	e per phase per k	cm of 0.15 ohm,	3.5 mH [5+5]	/
(b) 8.a)	Explain about Bewley's I	attice Diagram.	AG	AG	[545]	_
b)	What is a sag-template? If of power conductors. A transmission line conductor of 50 and 80 metres above 300 metres. If the tension conductor and water at a metre = 0.844Kg. Assume	ector at a river crossive water level. The linthe conductor is point midway betw	ng is supported find the second of the towers. Very large second of the towers.	rom two towers a ce between the to be clearance betw Weight of condu	t height owers is veen the	Ĺ
9.a) b)	What is a stringing chart? conductors on the support. An overhead transmission	s. Tine has a span of 22	20m, the conducto	or weighing 804	kg/km.	
10.a) b)	Calculate the maximum 5,758 kg. Assume safety for the desired control of the cont	actor 2. A contract of a second a secon	ingle core cable.	AG	[5 $+5$]	<u></u>
b)	Derive the expression for the insulation resistance of 2/5cm and resistivity of insulation resistance r	the insulation resistant of a single core cable	le is 495 MO/km	If the core diar	meter is s.[5+5]	_
AG .	AG AG	00 O 00	AG	AG	AG	<u> </u>
AG,	AG AG	AG	AG	AG	AG	Δ

(