R16 Code No: 134CF JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year II Semester Examinations, May - 2019 SWITCHING THEORY AND LOGIC DESIGN (Common to EEE, ECE, MCT, ETM) Time: 3 Hours Max. Marks: 75 **Note:** This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units, Answer any one full question from each unit. Each question. carries 10 marks and may have a, b, c as sub questions. PART - A (25 marks) 1.a) Perform the following conversions $(476.64)_{10} = ()_2 = ()_8$. Perform the following operation using 2's complement method 1111.10 – 0101.11.[3] b) c) Define Multiplexer. Explain in brief about 2:1 Mux. [2] d) Explain the procedure to construct the 3 variable K-map with an example. [3] e) Derive the characteristic equations of D and T flipflop. [2] f) Give the differences between latches and flipflops. [3] Define state diagram. g) [2] h) List the features of sequential circuits. [3] i) What are finite state machines? [2] j) List the limitations of finite state machines. [3] PART - B (50 Marks) 2. Design and realize the 3 bit binary to unit distance code using NOR gates. [10] OR 3. Simplify and realize the following Boolean expression using logic gates. a) Y=AB+A'C+BC b) Y = (A + B' + C')(A + B' + C)Design a digital system to compare two binary numbers of 1 bit by using logic gates. [10] OR

AG AG AG AG AG AG AG A

Explain the principle of Universal shift Register (USR). Using the same, design/4-bit,

Realize 3:8 maxterm generator using 2:4 maxterm generators. Using the same, Design a system to provide the difference of two numbers. Use external two input gates only. [10]

[10]

[10]

Explain master slave JK flipflop with neat timing diagram.

mod-8 twisted ring counter.

5.

AG	AG	AG	AG.	AG	AG	AG	A
8. A C	maximum of for the follo a) On Mond b) On Tuesc c) On Wedn d) Next day, e) On Friday	wing conditions of lay, there were 10 lay, 2 books were esday, one book is 3 books were rere, one book was to	e number of book over a week. books removed and do is added to the bo moved from the r aken out for read	ack and given it ting.	bookrack on a c	laily basis	A
	All the rema Discuss about Design a dig	ut the approaches gital controller for data flip flop. Present sta	of designing synthesis the state table state table state table state table state table state Next state Input(x)=0	nday to clean the nchronous sequen hown below usin tate, Output(z) Input(x)=1	tial finite state m	[10] nachines	_
AG	AG	A B C D	C,0 D,0 C,1- A,1-	B,1 D,0 A,0 A,0		AG	A
10.	four or more	consecutive 1 in	puts or two or mo	that produces a 1 ore consecutive 0 model of a clocke	inputs.	[10]	A
	AG	AG	00 000	- AG	AG	AG	A
AG	AG	AG	AG	AG	AG	AĞ	Д
A G.	AG	AG	AĢ	AG	AG	AG	A