R13

Code No: 114DT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, May - 2015 SWITCHING THEORY AND LOGIC DESIGN (Cemmon to EEE, BME)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

		(25 Marks)
1.a)	Define Binary coded decimal code.	[2M]
b)	Draw the logic diagram of NAND gate and explain.	[3M]
c)	Define combinational circuit.	[2M]
d)	Write short notes on Multiplexers.	[3M]
e)	Define Flip Flop.	[2M]
f)	What is the difference between sequential and combinational circuits?	[3M]
g)	Define state diagram.	[2M]
h)	Write short notes on ripple counter.	[3M]
i)	Define ASM Chart.	[2M]
j)	Explain briefly about partition techniques.	[3M]

PART - B

į

(50 Marks)

- 2.a) Convert the number (1222)₃ into decimal and Hexadecimal number system.
 - b) Add and multiply the numbers (23)₅ and (345)₆ without converting to decimal.
 - c) Consider a function 'F'. Show that F.F'=0 and F+F'=1. [3+4+3]

OR

- 3.a) Convert the number (4413)₅ into decimal and Hexadecimal number system.
 - b) Find the 9's complement of the numbers 12345678, 87654321.
 - c) Express the function B'D+A'D+BD in sum of minterms and product of maxterms.

[3+3+4]

- 4.a) Simplify the Boolean function $F(A,B,C,D) = \Sigma(4,5,6,8,15)$ using four variable maps.
 - b) Simplify the expression BD+BCD'+AB'C'D' and implement them with two level NAND gate circuit.
 - c) Design a three input majority function such that the output is 1 if the input has even number of 1's otherwise the output is 0. [4+3+3]

OR

- 5.a) Simplify the Boolean function $F(A,B,C,D) = \Sigma(0.2.3.5,7,8.10.11)$ by first finding the essential prime implicants.
 - b) Draw a logic diagram using two input NOR gates to implement the expression (AB+A'B')(CD'+C'D)
 - c) Design a combinational circuit with three inputs and one output. The output is equal to logic-1 when the binary value of the input is less than 4 otherwise the output is logic-0. [3+3+4]

- 6.a) Draw the structure of D-Flip Flop and write its truth table.
 b) Write short notes on Binary Cell.
 c) Design T Flip Flop using any other Flip Flop.

 OR

 7.a) Draw the structure of T-Flip Flop and write its truth table.
 b) What are the fundamentals of the Sequential Machine Operation?
 c) Design JK Flip Flop using any other Flip Flop.

 [3+3+4]
- 8.a) What is a synchronous sequential circuit? Explain its analysis.
 - b) Explain in detail about shift Register.
- c) How many Flip Flops will be complemented in a 10 bit binary ripple counter to reach the next count after counting 1111110011? [3+4+3]

OR

- 9.a) Write short notes on synchronous sequential finite state machines.
 - b) Explain the design of ring counter using shift registers.
 - c) Draw the logic diagram of a 4 bit binary ripple counter using flip flops that trigger on negative edge transition. [3+4+3]
- 10.a) Explain the capabilities of finite state machine.
 - b) Explain the concept of minimal cover table.
 - c) Derive the state table for the ASM chart of data processor subsystem for the binary multiplier [3+3+4]

OR

- 11.a) Explain in detail about Mealy and Moore model.
 - b) Explain about the system design using data path and control sub systems.
 - c) Design the control circuit of binary multiplier using D Flip Flops and decoder.

[4+3+3]

---00O00---