AG AG AG AG AG AG AG

AG	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, May - 2017 SWITCHING THEORY AND LOGIC DESIGN (Electrical and Electronics Engineering) Time: 3 Hours Max. Marks: 75
. AG	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART—A (25 Marks)
AG	1.a) AB+A'C+BC = AB+A'C represents which theorem. [2] b) How do you obtain dual of an expression? [3] c) What are don't cares? [2] d) Explain the wired logic. [3] e) Compare latch and flip flop. [2] f) Explain the timing considerations of sequential circuits. [3] g) What are the drawbacks of ripple counters? [2] h) Explain about state diagram. [3] i) List the capabilities of finite state machine. [2] j) Explain about ASM chart. [3]
AG	2.a) Convert the given Gray code number to equivalent binary 00100101 1110010. b) Convert (A0F9.0EBA98.0DC) ₁₆ to decimal, binary, octal. OR 3.a) Simplify the following Boolean expressions using the Boolean theorems.
AG	 (i) (A+B+C) (B'+C) + (A+D) (A'+C) (ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the basic Gates.
AG	5. With the help of Logic diagram and Truth Table, discuss 8×1 Multiplexer and then realize $f(x, y, \bar{z}) = \sum m(1, 2, 4, 7)$ using 8×1 MUX as well as using 4×1 MUX. [10]