

Question Paper Code:

PH103BS

An AUTONOMOUS Institution

ACE-R20

SEMESTER END EXAMINATION

I B. Tech- I Semester- JULY- 2021 **Engineering Physics** (common to CE & ME)

Time: 3 Hours	Max. Marks: 70

	H. T. No											
--	----------	--	--	--	--	--	--	--	--	--	--	--

Answer any five full questions from the following. All Questions carry equal marks. M=Marks; CO=Course Outcomes; PO= Program Outcomes

Q.No	Question	M	CO	PO
1. a)	Explain the four fundamental forces of nature in terms of particles	8	1	1
	experiencing, range and strength.			
b)	What is Newton's second law and explain its form invariance.	6	1	1
2. a)	For a cartisian position vector Xi+Yj+Zk; deduce cylindrical and	8	1	1
	spherical equivalent, for given $(3, \pi/3, -4)$ find the cylindrical			
	coordinates.			
b)	Explain the terms relaxation time and quality factor. What is the	6	2	1
	relaxation time for a perfectly simple harmonic oscillator.		_	
3. a)	Deduce an expression for damped harmonic oscillator and explain the	8	2	1,2
	factors heavy and critical damping with an example in each.			
b)	Explain longitudinal wave equation, acoustic waves and standing sound	6	3	1
4	waves.		2	1.0
4. a)	Derive the differential equation of motion of waves on strings and give	8	3	1,3
1.)	the general solution of the same.		2	1
(b)	What is the power absorbed by an oscillator? Derive the relation for	6	2	1
5 a)	power absorbed.	8	3	1
5. a)	Explain the terms impedance matching, standing waves, eigen	0	3	1
	frequencies and acoustic waves with neat diagrams (whereever necessary).			
b)	Derive the equation for the velocity of a longitudinal wave in a bar.	6	3	1
6. a)	For a 15000 LPI grating element, discuss Rayleigh's criterion of	6	4	1
0.a	resolving power.	U	7	1
h)	Discuss the Fraunhofer diffraction due to a single slit and explain how	8	4	1
	central fringe width depends on the width of the slit.	O		1
7. a)	Differentiate between Mach-Zehnder interferometer and Michelson's	8	4	2
, , , ,	interferometer.	Ü		_
b)	What is lasing action? How is it achieved and mention its use in lasers.	6	5	1,2
8. a)	Describe the pumping mechanisms used in Ruby, He-Ne, CO ₂ lasers	8	5	1
	with energy values.			
b)	For an optical fiber of core 1.55 and cladding 1.45 refractive indices,	6	5	1
	find Numerical Aperture and acceptance angle when light is launched			
	form air. Compare the same when launched from water with refractive			
	index value 1.33.			

