

An AUTONOMOUS Institution

Question Pape Code:

PH103BS

ACE-R20

Supplementary Examination I B. Tech- I Semester- November 2021 Engineering Physics (Common To CE,Mech)

Time: 3 Hours

Max. Marks: 70

H. T. No	
----------	--

Answer any five full questions from the following. All Questions carry equal marks. M=Marks; CO=Course Outcomes; PO= Program Outcomes

Q.No	Question	M	CO	PO
1. a)	What are the different types of forces in Nature? Explain in detail.	10	1	1
b)	What is the force of gravity acting on an object at the Earth's surface? Earth's mass = $5.98 \times 10^{24} \text{ Kg}$, Object's mass = 1000Kg , the radius of Earth is $6.38 \times 10^{6} \text{m}$.	4	1	1
2. a)	Derive the equations of motion in polar coordinates.	7	1	2
b)	A lift carries a weight of 150N and is moving with a uniform acceleration of 2.45m/s². Determine the Tension in the cable. (a) when the lift is moving upwards (b) when the lift is moving downwards.	7	1	1,2
3. a)	Derive the differential equation of damped harmonic system.	8	2	1
b)	Discuss the conditions for over damping and critical damping of a system subjected to damping force.	6	2	1,2
4. a)	What is an electrical harmonic oscillator? Obtain an expression for the frequency of oscillations.	8	2	1
b)	Distinguish between electrical and mechanical oscillator.	6	2	1
5.	Derive the frequency of n th mode of vibration of stretched string clamped at both the ends. Show that the ratio of all possible frequencies is integral multiples of fundamental frequency.	14	3	1,3
6. a)	Explain Newton's rings experiment with diagram and derive an expression for radius of curvature of plano-convex lens.	10	4	1
b)	In a Newton's rings experiment the diameter of 15 th ring was found to be 0.59cm and that of 5 th ring is 0.336cm. If the radius of curvature of lens is 100cm, find the wavelength of the light.	4	4	1
7. a)	Compare spontaneous emission and stimulated emission.	6	5	1
b)	With the help of diagram, describe the construction and working of He-Ne laser.	8	5	1
8. a)	Define acceptance angle and Numerical aperture. Derive an expression for angle of acceptance.	6	5	1
b)	Mention any four applications of optical fibers.	4	5	1
c)	An optical fiber has a core material of refractive index of 1.55 and cladding material of refractive index of 1.50. The light is launched into it in air. Calculate its numerical aperture.	4	5	1