AG AG AG AG AG AG AG A

Code	R18 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD	
AG	B. Tech III Year I Semester Examinations, February - 2022 CONTROL SYSTEMS (Common to ECE, EIE) Max. Marks: 75	A
Answer any five questions All questions carry equal marks		
$\bigwedge \left(\begin{array}{c} 1.a \\ -1 \end{array} \right)$	With a neat closed loop block diagram, explain automobile driving system. Compare and contrast open loop and closed loop system. [847]	\triangle
2.a) b)	With a neat closed loop block diagram explain temperature control system. Explain the benefits of feedback system. [8+7]	
3. AG	Find stability of the following system with characteristic equation using Routh Hurwitz criterion $2s^4 + s^3 + 3s^2 + 5s + 10 = 0$	A
4.	Elucidate Root Locus techniques with suitable example. [15]	
5.	Draw Nyquist plot for the system having following characteristics equation. [15]	
<u>A</u> G.	Draw Bode plot for the system with the following transfer function. $L(s) = \frac{2500}{s(s+5)(s+50)}$ [15]	\triangle
AG.	The transfer function of a lag-lead compensator is given by $D(s) = \underbrace{\begin{bmatrix} \overline{\tau_1} s + 1 \\ \beta \overline{\tau_1} s + 1 \end{bmatrix}}_{\text{Lag Section}} \underbrace{\begin{bmatrix} \overline{\tau_2} s + 1 \\ \alpha \overline{\tau_2} s + 1 \end{bmatrix}}_{\text{Lead Section}}; \beta > 1, \alpha < 1, \tau_1, \tau_2 > 0$ Give an op amp circuit that realizes this D(s). [15]	<u> </u>
<u>A</u> (3.	A system is given by the state equation $ \dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u; \mathbf{x}(0) = \mathbf{x}^0 $	/
	$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \; ; \; \mathbf{x}(0) = \mathbf{x}^0$	
AG	Using Laplace transform technique, transform the state equations into a set of linear algebraic equations. [15]	\wedge