AG AG AG AG AG AG AG

Cod	R18
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD	
A /^>	B. Tech III Year II Semester Examinations, February/March - 2022 A DIGITAL SIGNAL PROCESSING A A
	ee: 3 Hours (Common to ECE, EIE) Max. Marks: 75
	Answer any five questions
	All questions carry equal marks
△ (1.a) b) c)	What are the conditions for stability and causality of an LFL system? Explain. Explain in detail the classification of discrete-time systems. What is the need for multi-stage implementation of sampling rate converters? Explain with an example. [5+5+5]
2.a)	Find 8-point DFT X(K) of the real sequence.
, b)	$x(n) = \{0.707, 1, 0.707, 0, -0.707, -1, -0.707, 0\}$ by using DIF radix-2 FFT Find the N-point DFT of $x(n) = b^n \cos an$ using the linearity property. [8+7]
	$\Delta(-1)$ $\Delta(-1)$ $\Delta(-1)$ $\Delta(-1)$ $\Delta(-1)$ $\Delta(-1)$
/_3.a) b)	State and prove any two properties of Discrete Fourier series. Given $x(n) = 2^n$ and N=8, find $X(k)$ using DIT-FFT algorithm. [6+9]
4.a)	Design a digital low pass filter using Chebyshev filter that meets the following
	specifications: Passband magnitude characteristics that is constant to within 1dB for recurrences below $\omega = 0.2\pi$ and stopband attenuation of atleast 15dB for frequencies
A ()	between $\omega = 0.3\pi$ and π . Use bilinear transformation
/\\	Derive the relation between digital and analog frequencies in bilinear transformation
	[10+5]
5.a)	Design a Butterworth analog high pass filter that will meet the following specifications i) Maximum pass band attenuation = 2dB
	ii) Passband edge frequency = 200rad/sec
Λ	iji) Minimum stopband attenuation ≠20dB \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
/\\\\ b)	Prove that for a linear phase FIR filter the impulse response is symmetric. [8+7]
6.a)	Explain the type II frequency sampling method of designing an FIR digital filter.
b)	Design a band pass filter which approximates the ideal filter with cutoff-frequencies at
	0.2rad/sec and 0.3rad/sec. The filter order is M=7. Use the Hanning window function.
$\Delta \cap$	$\triangle G$
/ \	Explain coefficient quantization of IIR filters.
0)	What is Round-off Noise in IIR Digital Filters? Discuss its effects in IIR filters. [7+8]
8.a) b)	Describe various Structures of IIR filters with suitable diagrams. Explain the limit cycle oscillations due to product round-off and overflow errors.[10+5]
AG	AG AG AG AG AG