AG AG AG AG AG AG AG A

Code	No: 155CQ	TEMPU TEC	INOLOGIC	AT TIMIT	VEDCITY HVDED	RAD	
AG		III Year I Sen OPER (Mec		nations, SEARCI neering) uestions	Max.	Marks: 75	_
		im ques		1		1. 1	
(1.a) b)	Define Operations Solve the followin Maximize Subject to	Research and glinear-program $Z = 5x_1 + 3x_2$ $3x_1 + 5x_2$ $5x_1 + 2x_2$ and $x_1, x_2 \ge 0$	amming probl ≤ 15 ≤ 10	naracteris lem by gr	tics: aphical method	(7+8)	_
<u></u>		$ \begin{array}{c} $	following LPP	·. 	G AC	(15)	_
3. 	transportation cost	(Rs. per quir wing table. Dethod.	tal) for shipp etermine the	ing steel optimal b	s and five rolling from furnaces to roll asic feasible solution	ing mills/is by Vogel's [15]	_
	F1	M1 M2 4 2	M3 M4 3 2	M5 6	Capacity (in quintals) 8		
	F2	5 4	5 2	1	12		
AG	F3 Requirement (in quintals)	6 5 4 4	\(\frac{4}{6}\)\(\frac{7}{8}\)	3/\		AG	<u> </u>
4.	Solve the followin	g travelling sa	lesman proble	em so as	to minimize the cost p		
AG	AG Z	A B C	A B 3 - 6 5	5 -	D E 3 3 6 4		_
		D E	3 3	6 4	- 6 6 -		A
AG	AG /	\G	AG	\triangle	G AC	i AG	/

There are seven jobs, each of which has to go through the machines A ... 5. order AB. Processing times in hours are given below:

Jøb \	1	/2	3	4	7 5	6	7
Machine A	3	12	15	6	10	11	9
Machine B	8	10	10	6	12	1	3

Determine a sequence of these jobs that will minimize the total elapsed time T. Alto find idle time for machines A and B. [15]

The following morality rates have been observed for a certain type of light bulbs i. a installation with 1,000 bulbs:

End of the week	1	2	3	4	5	6	and B in the
Probability of failure	0.09	0.25	0.49	0.85	0.97	1.00	- A

There are a large number of such bulbs which are to be kept in working order. If a bullfails in service, it costs Rs.3 to replace but if all the bulbs are replaced in the same operation, it can be done for only Rs.0.70 a bulb. It is proposed to replace all bulbs at fixed intervals, whether or not they have burnt out, and a continue replacing burnt out bulbs as they fail. (a) What is the best interval between group replacements? (b) At what group replacement price per bulb, would a policy of strictly individual replacement become preferable to the adopted policy?

Explain the following:

/i) Two-person zero-sum game

ii) Pure strategy

iii) Saddle point

Use graphical method to solve the following game and find the value of the game. [7+8]

	Player B						
A Player A	/B1 /	B2	B3/	B4			
A1	2\	2	3/-	- \			
A2	4	3	2	6			

A drive-in bank window has a mean service time of 2 minutes, while the customer's 8. arrive at a rate of 20 per hour. Assuming that these represent rates with a Poisson distribution, determine

a) The proportion the teller will be idle,

b) How long a customer will wait before reaching the server?

c) What fraction of customers will have to wait in line?

---00O00---