

ACE Engineering College

(An Autonomous Institution)

Question Paper Code:

EE404PC

ACE-R20

Semester End Examination II B. Tech- II Semester- AUGUST/SEPTEMBER -2022 CONTROL SYSTEMS

ELECTRICAL AND ELECTRONICS ENGINEERING

Time: 3 Hours

(

Max. Marks: 70

H. T. No

Answer any 5 Questions out of 8 Questions from the following Q.No Question Marks 1. a) Explain the open loop &closed loop control systems. 6 b) The signal flow graph for a feedback control system is shown in below figure. Determine the closed loop transfer function C(s)/R(s). Briefly discuss about the effects of PD and PI systems. A unity feedback system has a forward path transfer function 10 $G(s) = \frac{10}{10s(s+2)}$. Find the value of damping ratio, undamped natural frequency of the system, percentage over shoot, peak time and settling time. A Unity feedback control system has an open loop transfer function given by, $G(s) = \frac{K}{S(S^2 + 4S + 13)}$ 3. 14 Sketch the root locus. Discuss about initial and final value theorems used in time response analysis. 4. a) 6 Using Routh criterion, determine the stability of the system whose characteristic **b**) equation is given by $9s^5 - 20s^4 + 10s^3 - s^2 - 9s - 10 = 0$ Briefly explain the concept of stability of a control system. 5. a) 5 **b**) Determine the overall transfer function C(s)/R(s) for the system shown in below 9 figure Н;

6.	Sketch the Bode Plot for the following transfer function and obtain the gain and phase cross over frequencies. $G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$	14
7.	A unity feedback control system has an open loop transfer function given by $G(s)H(s) = \frac{10}{S(S+3)(S+6)}$ Draw Nyquist diagram and determine its stability.	14
8. a)	Explain the concept of observability and controllability.	5
b)	A linear time invariant system is represented by the state equation,	9

(