



An AUTONOMOUS Institution

**Question Paper Code:** 

EE302PC

ACE-R20

## Semester End Examination II B. Tech- I Semester- MARCH-2022 ELECTRICAL CIRCUITS

(Electrical and Electronics Engineering)

**Time: 3 Hours** 

Max. Marks: 70

H. T. No

Answer any 5 Questions out of 8 Questions from the following

| Q.No  | Question                                                                                                                                                                                                                                                                                                           | Marks |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. a) | Determine the current flowing through the $6\Omega$ resistor and voltage drop across $2\Omega$ resistor in the circuit shown below figure by using nodal analysis. $I_1 \downarrow \qquad $ | 6     |
| b)    | Find $V_o$ in the circuit shown in below figure by using Thevenin's Theorem. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                 | 8     |
| 2. a) | Explain reciprocity theorem in detail.                                                                                                                                                                                                                                                                             | 6     |
| b)    | Compute the $vo$ using super position theorem for the circuit shown in figure. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                              | 8     |
| 3.    | Derive the expression for the complete response for current in a series RLC circuit excited by DC supply by closing the switch at $t=0^+$                                                                                                                                                                          | 14    |

|       | Explain the following  a) Dot convention in coupled circuits  b) Ideal transformer  c) Complex power in a 1-Ø circuit                                                        | 5+5+4 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 5. a) | Evaluate the DC transient response of RL series circuit.                                                                                                                     | 7     |
| b)    | Deduce the expression for co-efficient of coupling of a magnetically coupled circuit.                                                                                        | 7     |
| 6. a) | Explain the properties of Laplace transforms in Detail.                                                                                                                      | 7     |
| b)    | A series RLC circuit has a resistance of $20\Omega$ , a capacitance of $0.02\mu F$ , and an inductance of $0.02H$ . Find the resonance frequency and half power frequencies. | 7     |
| 7. a) | Derive the relationship between impedance and admittance parameters.                                                                                                         | 6     |
| b)    | Determine the transmission parameters of the network shown in below figure.  60                                                                                              |       |
|       | ≥ 3n ≥ 3n                                                                                                                                                                    | 8     |
| 8. a) | Explain the convolution Integral in detail.                                                                                                                                  | 8     |