

An AUTONOMOUS Institution

Question Paper Code:

EE305PC

ACE-R20

Semester Supplementary Examination II B. Tech- I Semester- SEPTEMBER-2022 Electromagnetic Field

(Electrical and Electronics ngineering)

Ti	me:	3	HΛ	nre
	1116.	•	\mathbf{n}	111.5

Max. Marks: 70

Answer any 5 Questions out of 8 Questions from the following							
Answer any 5 Questions out of 8 Questions from the following							

	Answer any 5 Questions out of 8 Questions from the following	
Q.No	Question	Marks
1. a)	State and explain coulomb's law with necessary equations.	7
b)	Find the electric field intensity at P(1,1,1) caused by four identical 3nC charges	7
	located at P1(1,1,0), P2(-1,1,0), P3(-1,-1,0) and P4(1, -1, 0).	
2. a)	Derive the boundary conditions between dielectric to dielectric medium?	7
_b)	Derive the expression for capacitance of two wire line	7
3. a)	Derive the expression for magnetic field intensity due to infinitely long straight filament carrying a direct current [13]	7
b)	Using Ampere's circuit law, determine the expression for H due to uniform sheet of surface current $K = K_y$ ay in the $z = 0$ plane.	7
4. a)	Derive the expression for energy density in electrostatic field.	7
b)	Derive the expression for the force between two finite current carrying loops.	7
5. a)	Using ampere's circuit law, determine the magnetic field intensity due infinitely long coaxial transmission line.	7
b)	Explain the work done in moving a point charge in an electrostatic field	7
6. a)	Represent the Maxwell's equations both in integral form and differential form for time varying fields.	7
b)	If the electric field strength (E) of an electromagnetic wave in free space is given by $E = 8 \sin(\omega t - \beta z) a_y V/m$. Find the magnetic field intensity H.	7
7. a)	Define the following terms i)Conduction current density ii) Convection current density iii) Displacement current	7
	density	
b)	Derive and prove that the Poynting theorem.	7
8.	An electromagnetic wave propagates in a dielectric medium with $\mathcal{E} = 9\mathcal{E}_0$ along	14
	Z-direction.	• •
	It strikes another dielectric medium with $\mathcal{E} = 4\mathcal{E}_0$ at $z = 0$. If the incoming wave has a	
	maximum value of 0.1 V/m at the interface and angular frequency is 300M rad/s,	
ĺ	determine	
	a) reflection coefficient	
	b) transmission coefficient	
	c) Expression for incident, reflected and transmitted fields.	