

Question Paper Code:

PH 103BS

ACE-R20

Semester End Examination I B. Tech- I Semester Regular/ Supply - JUNE-2022 **Enginering Physics** (Common to CE, MECH)

Time: 3 Hours

Max. Marks: 70

H. T. No	
----------	--

Answer any 5 Questions out of 8 Questions from the following

Q.No	Question	Marks
1. a)	Derive equations of motion in polar coordinates.	8
b)	Explain constraints and friction.	
2. a)	Derive the differential equation of damped harmonic system.	8
b)	subjected to damping force.	
3. a)	Derive an equation for electrical oscillator.	7
b)	Give electrical analogy to mechanical oscillator.	7
4. a)	Derive the equation for the velocity of transverse wave along a stretched string.	10
b)	Calculate the speed of transverse waves in a wire of 1mm ² cross-section under its	4
	tension produced by 0.1kg weight. (Specific gravity of material of wire = 9.81gm/cm^3 and $g = 9.81 \text{m/sec}^2$).	
5.	Explain longitudinal wave. Derive an equation for the velocity of longitudinal	14
	wave through a cylindrical cube of unit cross sectional area.	
6. a)	Explain Newton's rings experiment with diagram and derive an expression for	10
1.5	radius of curvature of plano-convex lens.	
b)	In a Newton's rings experiment, diameter of 15th ring was found to be 0.59cm	4
	and that of 5th ring is 0.336cm. If the radius of curvature of the lens is 100cm,	
_	find the wave length of the light.	
7. a)	Explain the characteristics of a laser beam.	4
b)	Explain the principle, construction and working of He-Ne laser	10
8. a)	Explain the principle behind the functioning of an optical fiber.	4
	Define and derive an expression for acceptance angle for an optical fiber. How it is related to Numerical aperture?	10