AG AG AG AG AG AG AG

C-1	R18
Code No: 156BC JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD	
A Post	A B. Tech III Year II Semester Examinations, August - 2022
A(J	HEAT TRANSFER (Mechanical Engineering)
Time: 3 Hours Max.Marks:75	
Answer any five questions	
	All questions carry equal marks
Α	
$\triangle \left(\overrightarrow{J}_{b}^{\mathbf{a}} \right)$	Derive the general heat conduction equation in Cartesian Coordinate system. A furnace wall consists of 200 mm layer of refractory bricks, 6 mm layer of steel plate and a 100 mm layer of insulation bricks. The maximum temperature of the wall is 1150°C on the furnace side and the minimum temperature is 40°C on the outermost of the wall. An accurate energy balance over the furnace shows that the heat loss from the
AG	wall is 400 W/m². It is known that there is a thin layer of air between the layers of refractory bricks and steel plate. Thermal conductivities for the three layers are 1.52, 45 and 0.138 W/m²K respectively. Find i) How many millimeters of insulation brick is the air layer equivalent? ii) What is the temperature of the outer surface of the steel plate? [7+8]
2.a)	Derive the expression for temperature distribution under one dimensional steady state heat conduction through composite cylinder.
b) 3.a)	Define thermal conductivity, thermal diffusivity and thermal resistance and write their equations: Derive an expression for temperature distribution and heat transfer rate through fin insulated at the tip.
b)	What are the assumptions for lumped capacity analysis? Discuss. [8+7]
4. AG	Aluminum fins of rectangular profile are attached on a plane wall with 5 mm spacing. The fins have thickness $y = 1$ mm, $L = 10$ mm, and the thermal conductivity $K = 200 \text{ W/m K}$. The wall is maintained at a temperature 200°C , and the fins dissipate heat by convection into the ambient air at 40°C , with heat transfer coefficient $h = 50 \text{ W/m}^2\text{K}$. Determine the heat loss.
5.a) b)	Explain the Reynold and Colburn Analogy. A plate of length 750 mm and width 250 mm has been placed longitudinally in a stream of crude oil which flows with a velocity of 5 m/s. If the oil has a specific gravity of 0.8 and kinematic viscosity of 1 stoke, calculate i) Boundary layer thickness at the middle of the plate. ii) Shear stress at the middle of plate and iii) Friction drag on one side of the plate. [7+8]
6.a)	Show by dimensional analysis for free convection, Nusselts number is a function of Prandtl number and Grasshoff number. What are the advantages and limitations of dimensional analysis? Explain. [8+7]

AG AG AG AG AG AG AG

Derive expression for effectiveness by NTU method for parallel flow heat exchanger. 7.a) Steam at atmospheric pressure enters the shell of a surface condenser in which the water flows through a bundle of tubes of diameter 25 mm at the rate of 0.05 Kg/s. The inlet and outlet temperatures of water are 15°C and 70°C respectively. The condensation of steam takes place on the outside surface of the tube. If the overall heat b) transfer coefficient is 230 W/m²K, calculate the following using NTU method: i) The effectiveness of the heat exchanger ii) The length of the tube Take the latent heat of vaporization at 100°C is 2257 kJ/kg. [7±8] Explain briefly the various regimes of saturated pool boiling by drawing the diagram. 8.a) What is a black body? How does it differ from a gray body? Discuss in detail. [8+7]<u>__oo0oo___</u>