

An AUTONOMOUS Institution

Question Paper Code:

EC305ES

ACE-R20

Semester Supplementary Examination II B. Tech- I Semester- SEPTEMBER-2022 PROBABILITY THEORY AND STOCHASTIC PROCESSESS

(Electronics and Communication Engineering)

Time: 3 Hours

Max. Marks: 70

H. T. No	
H. I. NO	
A	

Answer any 5 Questions out of 8 Questions from the following M=Marks

Q.No Question Give the classical definition of probability. Discuss joint probability and conditional 1. a) M probability with an example. Briefly explain the Gaussian density and distribution function with plots. b) Determine the probability of the event $\{X=7.3\}$, if Gaussian random variable 5 having $a_x = 7$ and $\sigma_x = 0.5$. Compute the probability of the event "getting a queen card" from a deck of 52 c) 3 2. a) Let X and Y be jointly continuous random variables with joint density function 7 $f_{XY}(x,y) = xy e^{-\left(\frac{x^2+y^2}{2}\right)} \text{ for } x>0, y>0$ (i) Check whether x and y are independent. (ii) Find P ($x \le 1$, $y \le 1$). b) Prove the following: 7 $var(ax+by) = a^2 var(x) + b^2 var(y) + 2ab cov(x,y)$ 3. a) If X(t) is a stationary random process with density function 6 f(x) = 3x, 0 < x < 2=0, otherwise. and auto correlation function: $R_{XX}(\tau) = 9 + (2/\tau)$, where X is a random variable. Find the mean and variance of the random variable. b) Explain about mean-ergodic process, Auto correlation and Cross correlation 8 functions with its properties. 4. a) Define conditional distribution and density functions and list their properties. 6

4.b)	Random variables V and V have the state of	
	Random variables X and Y have the joint density:	
	$f_{XY}(x,y) = 1/24$ for $0 < x < 6 & 0 < y < 4$	
	=0 , elsewhere	
	What is the expected value of the function $g(X,Y) = (XY)^2$?	
5. a)	How do you explain statistically independent events using Baye's rule?	6
b)	A random process is defined as $X(t) = A \sin(\omega t + \theta)$, where A is a constant	8
	and θ is a random variableuniformly distributed over $(-\pi,\pi)$, Check $X(t)$ for stationarity.	
6. a)	Find auto correlation function of a random process whose power spectral density is given by $1/(25+\omega^2)$?	6
b)	A wide sense stationary random process $X(t)$ is applied to the input of an LTI system whose impulse response is $5t e^{-2t}$. The mean of $X(t)$ is 3 . Find the mean output of the system.	3
c)	Briefly explain the concept of cross power density spectrum.	5
, . aj	Show that a narrow band noise process can be expressed as in-phase and quadrature components of it.	7
j	A mixer stage has a noise figure of 20dB and this is preceded by a amplifier that has a noise figure of 9dB and an available power gain 15dB. Calculate the overall noise figure referred to the input.	7
. a) I	Find power spectrum of WSS noise process N(t) with autocorrelation function defined as below $R_{NN}(\tau) = Pe^{-3 \tau }$	6
b) F	Find the cross-correlation function for a cross-power density spectrum given below $(xy(\omega)=8/(\alpha+j\omega)^3)$?	8