

Question Paper Code:

CE303PC

ACE-R20

Semester Supplementary Examination II B. Tech- I Semester- SEPTEMBER-2022 STRENGTH OF MATERIALS-I

(CIVIL Engineering)

Time: 3 Hours

Max. Marks: 70

H. T. No			
	 	 	

Answer any 5 Questions out of 8 Questions from the following

Q.N		Marks			
1. 2	A steel bar ABCD of varying sections is subjected to the axial forces as shown in below figure. Find the value of 'P' necessary for equilibrium. If E = 210 kN/mm ² , determine the total elongation of the bar.	7			
b)	A steel cube of block of 50 mm side is subjected to a force of 10 kN (tension), 12.5	7			
1 .	kN (compression) and 7.5 kN (tension) along X, Y and Z directions respectively.				
	Determine the change in volume of the block. Take $E = 200 \text{ kN/mm}^2$ and $\mu = 0.3$.	-			
2.	Draw Shear Force Diagram & Bending Moment Diagram for a simply supported beam subjected to loads as shown in the figure	14			
	30KN/m				
	20KN A B C D E Im lm lm lm lm lm lm lm lm lm				
3. a	State the assumptions and derive the equation in theory of simple bending.	8			
	A I- section has a flanges width of 250 mm, overall depth 400 mm and thickness 20	6			
b)	mm. Find the maximum flexural stress developed in the beam for a bending moment of 120 kN.m.				

