

An AUTONOMOUS Institution

Question Paper Code:

CE303PC

ACE-R20

Semester End Examination II B. Tech- I Semester- MARCH-2022. STRENGTH OF MATERIALS-1 (Civil Engineering)

Time: 3 Hours

Max. Marks: 70

H. T. No						
	Marie Marin	107507	-			

Answer any 5 Questions out of 8 Questions from the following

Q.No	Question	Marks		
1. a)	Sketch a stress-strain diagram for a ductile material like Mild Steel tested under tension up to destruction, marking the salient points on it. Explain the significance of each point.			
b)	(i) Mention different types of stresses and strains. (ii) Define poission's rational factor of safety.			
2.	A beam 6 m long carries a uniformly distributed load of 25 kN/m. The beam is simply supported at left-hand end and the other support is at a point distant x from the right-hand end. (a)Determine the value of x if the mid-point of the beam is to be a point of contraexure and for this position	14		
	(b)Draw the Shear Force and Bending Moment diagrams.	ž		
3. a)	State the assumptions for the Simple Bending Theory	4		
b)	A cast iron bracket subjected to a bending has a cross section of I-section with unequal flanges as shown in the figure-1. If compressive stress in top flange is not to exceed 17.5N/mm2, what B. M the section can take? If the section is subjected to a S. F of 110kN, draw the shear stress distribution over the depth of the section.	10		
	50mm 50mm 250mm 175 mm Figure-1			
	Figure-1			
4. a)	Derive a relation for change in length of a uniformly varying circular bar subjected to an axial load 'P'	6		

b)	A Simply supported beam of length 5m carries a uniformly increasing load of 800N/m run at one end to 1600N/m run at the other end .Draw the shear force and bending moment diagrams also calculate the position and magnitude of maximum bending moment				
5. a)	230X400mm subjected to a shear force of 40KN. Calculate the maximum and average shear stress				
b)	Draw the Shear Force diagram and bending moment diagram for simply supported beam carrying triangular load	6			
6. a)	Compute the maximum deflection and support rotations of the following beam using figure-2 a) Method of Integration b) Moment Area method 30th 60th Figure-2	10			
b)	What is the relationship between rate of loading, shear force, slope and deflection at a section of beam.	4			
7. a)	Draw the Mohr's circle and indicate the locations of the principal stresses, and maximum shear stresses. From the Mohr's circle find the relative angles between the various planes you located.	6			
b)	At a certain point in a strained material, the intensities of Stresses on two planes at right angles to each other are 20N/mm2 and 10N/mm2 both tensile. They are accompanied by a Shear Stress of magnitude 10N/mm2. Find graphically or otherwise the location of principal planes and elevate Principal Stresses.	8			
8. a)	Determine the slope at A and deflection of B of the beam shown in figure 3 using the conjugate beam method.	7			
	w/unit length				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
b)	Explain in detail about Strain Energy and Von Mises theory	7			