COURSE STRUCTURE & DETAILED SYLLABUS

MECHANICAL ENGINEERING

B. TECH FOUR YEAR DEGREE COURSE

(Applicable for the batches admitted from 2020-2021)

Engineering College

Ankushapur(V), Ghatkesar(M), Medchal Malkajgiri (Dist.), Telangana - 501 301. (An Autonomous Institution, Affiliated to JNTUH, Hyderabad)

B.TECH. FOUR YEAR DEGREE COURSE MECHANICAL ENGINEERING COURSE STRUCTURE

	I Yea	r			I Sen	nester	
S.No.	Course	Course	Course Title	Peri	ods Per	Week	Credits
3.INU.	Туре	Code	Course The	L	Т	Р	Creans
1	BSC	MA101BS	Mathematics – I	3	1	0	4
2	BSC	PH103BS	Engineering Physics	3	1	0	4
3	ESC	CS103ES	Programming for Problem Solving	3	1	0	4
4	ESC	ME104ES	Engineering Graphics	1	0	4	3
5	BSC	PH106BS	Engineering Physics Lab	0	0	3	1.5
6	ESC	CS106ES	Programming for Problem Solving Lab	0	0	3	1.5
7	*MC	MC107ES	Environmental Science	3	0	0	0
8	*MC	MC108	Business English	2	0	0	0
			Induction Programme				
			Total	15	3	10	18

	IYe	ear			II Seme	ester	
S.No.	Course	Course	Course Title	Perio	ds Per V	Veek	Credits
5.110.	Туре	Code	Course The	L	Т	Р	Creuits
1	BSC	MA201BS	Mathematics – II	3	1	0	4
2	BSC	CH202BS	Engineering Chemistry	3	1	0	4
3	ESC	ME203ES	Engineering Mechanics	3	1	0	4
4	ESC	ME205ES	Engineering Workshop	1	0	3	2.5
5	HSMC	EN205HS	English	2	0	0	2
6	BSC	CH206BS	Engineering Chemistry Lab	0	0	3	1.5
7	HSMC	EN207HS	English Language and Communication Skills Lab	0	0	2	1
8	*MC	MC209	Python Programming	1	0	2	0
9	*MC	MC210	Aptitude & Reasoning	3	0	0	0
			Total	16	3	10	19

Note: *MC = Satisfactory/Unsatisfactory

	II Ye	ar			I Sen	nester	
S.No.	Course	Course	Course Title	Period	ls Per W	Veek	Credits
5. 1 NO .	Туре	Code	Course Thie	L	Т	Р	Creatts
1	BSC	MA301BS	Probability and Statistics & Complex Variables	3	1	0	4
2	PCC	ME302PC	Mechanics of Solids	3	1	0	4
3	PCC	ME303PC	Material Science and Metallurgy	3	0	0	3
4	PCC	ME304PC	Production Technology	3	0	0	3
5	PCC	ME305PC	Thermodynamics	3	1	0	4
6	PCC	ME306PC	Production Technology Lab	0	0	2	1
7	PCC	ME307PC	Machine Drawing Practice	0	0	2	1
8	PCC	ME308PC	Material Science and Mechanics of Solids Lab	0	0	2	1
9	*MC	MC309HS	Constitution of India	3	0	0	0
10	*MC	MC310ME	Auto CAD	0	0	3	0
			Total	18	3	9	21

	II Ye	ar			II Se	mester	r
S.No.	Course Type	Course Code	Course Title	Pe	riods P Week	er	Credits
	Type	Coue		L	Т	P	
1	ESC	EE401ES	Principles of Electrical and Electronics Engineering	3	0	0	3
2	PCC	ME402PC	Kinematics of Machinery	3	1	0	4
3	PCC	ME403PC	Thermal Engineering – I	3	1	0	4
4	PCC	ME404PC	Fluid Mechanics and Hydraulic Machines	3	1	0	4
5	HSMC	SM405MS	Business Economics & Financial Analysis	3	0	0	3
6	PCC	ME406PC	Fluid Mechanics and Hydraulic Machines Lab	0	0	2	1
7	PCC	ME407PC	Thermal Engineering Lab	0	0	2	1
8	ESC	EE409ES	Principles of Electrical and Electronics Engineering Lab	0	0	2	1
9	*MC	MC409HS	Gender Sensitization Lab	0	0	2	0
10	*MC	MC410ME	CREO	0	0	2	0
			Total	15	3	10	21

Note: *MC = Satisfactory/Unsatisfactory

	III Y	ear			I Se	meste	r
S.No.	Course	Course Code	Course Title		iods P Week	'er	Credits
	Туре	Code		L	Т	Р	
1	PCC	ME501PC	Dynamics of Machinery	3	1	0	4
2	PCC	ME502PC	Design of Machine Members-I	3	0	0	3
3	PCC	ME503PC	Metrology & Machine Tools	3	0	0	3
4	PCC	ME504PC	Instrumentation and Control Systems	3	0	0	3
5	PCC	ME505PC	Thermal Engineering-II	3	0	0	3
6	PCC	ME506PC	Operations Research	3	0	0	3
7	PCC	ME507PC	Instrumentation and Control Systems Lab	0	0	2	1
8	PCC	ME508PC	Metrology & Machine Tools Lab	0	0	2	1
9	PCC	ME509PC	Kinematics & Dynamics Lab	0	0	2	1
10	*MC	MC509	Intellectual Property Rights	3	0	0	0
11	*MC	MC510ME	Analysis Lab	0	0	3	0
12	*MC	MC511EC	Cyber Security	3	0	0	0
			Total	24	1	9	22

Note: *MC = Satisfactory/Unsatisfactory

	III Year	r			II Se	emeste	r
S.No.	Course	Course	Course Title	Pe	riods I Week		Credits
	Туре	Code		L	Т	Р	
1	PCC	ME601PC	Design of Machine Members-II	3	0	0	3
2	PCC	ME602PC	Heat Transfer	3	1	0	4
3	PCC	ME603PC	CAD & CAM	3	0	0	3
4	PCC	ME604PC	Finite Element Methods	3	0	0	3
5	PEC		Professional Elective – I	3	0	0	3
6	OEC		Open Elective – I	3	0	0	3
7	PCC	ME605PC	Heat Transfer Lab	0	0	2	1
8	PCC	ME606PC	CAD & CAM Lab	0	0	2	1
9	HSMC	EN608HS	Advanced English Communication Skills lab	0	0	2	1
10	*MC	MC107ES	Environmental Science	3	0	0	0
11	*MC	MC108	Business English	2	0	0	0
12	*MC	MC611EC	Artificial Intelligence	3	0	0	0
			Total	23	1	6	22

Note: *MC = Satisfactory/Unsatisfactory

MC107ES - Environmental Science- Should be Registered by Lateral Entry

Students Only. MC108 - Business English- Should be Registered by Lateral Entry

Students Only.

***Open Elective** – Students should take Open Electives from List of Open Electives Offered by Other Departments/Branches Only.

IV Year						I Se	emester
S.No.	Course	Course	Course Title		iods P Week	'er	Credits
	Туре	Code		L	Т	Р	
1	PCC	ME701PC	Refrigeration & Air Conditioning	3	0	0	3
2	PEC		Professional Elective – II	3	0	0	3
3	PEC		Professional Elective – III	3	0	0	3
4	PEC		Professional Elective – IV	3	0	0	3
5	OEC		Open Elective – II	3	0	0	3
6	PROJ	ME703PC	Industrial Oriented Mini Project/ Summer Internship	0	0	0	2*
7	PROJ	ME705PC	Seminar	0	0	2	1
8	PROJ	ME706PC	Project Stage - I	0	0	6	3
		Tota	1	15	0	12	21

*MC – Satisfactory/Unsatisfactory

Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

Note: Students should take Open Electives from the List of Open Electives Offered by Other Departments/Branches Only.

IV Ye	ear					II Ser	mester
S.No.	Course	Course	Course Title	Perio	ds Per	Week	Credits
5.110.	Туре	Code	Course The	L	Τ	P	Creuits
1	PEC		Professional Elective – V	3	0	0	3
2	PEC		Professional Elective - VI	3	0	0	3
3	OEC		Open Elective - III	3	0	0	3
4	PROJ	ME801PC	Project Stage - II	0	0	14	7
		To	tal	9	0	14	16

Professio	onal Elective – I
ME611PE	Unconventional Machining Processes
ME612PE	Machine Tool Design
ME613PE	Production Planning & Control

Professio	nal Elective – II
ME711PE	Additive Manufacturing
ME712PE	Automation in Manufacturing
ME713PE	MEMS

Profession	nal Elective – III
ME721PE	Power Plant Engineering
ME722PE	Automobile Engineering
ME723PE	Renewable Energy Sources

ME731PE Computational Fluid Dynamics
ME732PE Turbo Machinery
ME733PE Fluid Power Systems

Professional Elective – V						
ME811PE	Industrial Robotics					
ME812PE	Mechanical Vibrations					
MM813PE	Composite Materials					

Professional Elective – VI						
ME821PE	Industrial Management					
ME822PE	Production and Operations Management					
ME823PE	Tribology					

Open Elective -I					
ME600OE	Quantitative Analysis for Business Decisions				

Open Elective-II					
ME700OE	Basic Mechanical Engineering				

Open Elective-III					
ME800OE	Non-Conventional Sources of energy				

MA101BS: MATHEMATICS – I

(Linear Algebra and Calculus) (Common to CE, EEE, ME, ECE, CSE, IT, IOT, AI&ML, DSE)

Course Code	Category		Hours/W	Veek	Credits	Maximum Marks			
MA101BS	BSC	L			С	CIA	Total		
		3	1	-	4	30	70	100	
						Total	Classes:	60	
Prerequisite: Mathematica	ll Knowledge of 12 th / Inte	ermedia	te level						
Course Objectives: To lea	rn								
• Types of matrices and th									
• Concept of a rank of the	matrix and applying this	concept	t to know	the co	nsistency ar	nd solving	the system	m of line:	
equations.									
 Concept of Eigen values 	and eigenvectors and to re	educe the	he quadra	atic forr	n to canonio	cal form.			
• Concept of Sequence.									
• Concept of nature of the									
 Geometrical approach to 				ation to	the mathen	natical pro	blems		
	eas and volumes of revolut								
 Evaluation of improper i 		amma f	functions	•					
· Doutiol differentiation									
	oncept of total derivative								
 Finding maxima and mir 		d three	variable	s.					
Finding maxima and mir	nima of function of two an				the chie to				
• Finding maxima and mir	nima of function of two an earning the contents of thi	s paper	the stude	ent mus		of the sy	stom of or	mutions	
 Finding maxima and mir Course Outcomes: After la Write the matrix represe 	earning the contents of thi ntation of a set of linear earning	s paper	the stude	ent mus		n of the sy	stem of ec	quations	
 Finding maxima and mir Course Outcomes: After la Write the matrix represe Find the Eigen values an 	nima of function of two an earning the contents of thi ntation of a set of linear ea d Eigen vectors	s paper quation	the studes and to	ent mus analyse	the solutior	n of the sy	stem of ec	quations	
 Finding maxima and mir Course Outcomes: After la Write the matrix represe Find the Eigen values an Reduce the quadratic for 	earning the contents of thi ntation of a set of linear ed d Eigen vectors m to canonical form using	s paper quation	the studes and to	ent mus analyse	the solutior	n of the sy	stem of ec	quations	
 Finding maxima and mir Course Outcomes: After le Write the matrix represe Find the Eigen values an Reduce the quadratic for Analyse the nature of sec 	tima of function of two an earning the contents of thi ntation of a set of linear ea d Eigen vectors m to canonical form using quence and series.	s paper quation g orthog	the studes and to	ent mus analyse	the solutior	ı of the sy	stem of ec	quations	
 Finding maxima and mir Course Outcomes: After let Write the matrix represe Find the Eigen values an Reduce the quadratic for Analyse the nature of sec Solve the applications or 	nima of function of two an earning the contents of thi ntation of a set of linear ea d Eigen vectors m to canonical form using quence and series.	s paper quation g orthog	the stude s and to gonal trar	ent mus analyse	the solutior	n of the sy	stem of ec	quations	
 Finding maxima and mir Course Outcomes: After le Write the matrix represe Find the Eigen values an Reduce the quadratic for Analyse the nature of sec Solve the applications or Evaluate the improper in 	aima of function of two an earning the contents of thi intation of a set of linear ed d Eigen vectors m to canonical form using quence and series. In the mean value theorems tegrals using Beta and Ga	s paper quation g orthog s. mma fu	the stude s and to gonal trar unctions	ent mus analyse asforma	the solutior tions.	n of the sy	stem of ec	quations	
 Finding maxima and mir Course Outcomes: After le Write the matrix represe Find the Eigen values an Reduce the quadratic for Analyse the nature of sec Solve the applications or Evaluate the improper in 	aima of function of two an earning the contents of thi intation of a set of linear ed d Eigen vectors m to canonical form using quence and series. In the mean value theorems tegrals using Beta and Ga	s paper quation g orthog s. mma fu	the stude s and to gonal trar unctions	ent mus analyse asforma	the solutior tions.	n of the sy	stem of ec	quations	
 Finding maxima and mir Course Outcomes: After le Write the matrix represe Find the Eigen values an Reduce the quadratic for Analyse the nature of sec Solve the applications or Evaluate the improper in Find the extreme values 	aima of function of two an earning the contents of thi intation of a set of linear ed d Eigen vectors m to canonical form using quence and series. In the mean value theorems tegrals using Beta and Ga	s paper quation g orthog s. mma fu	the stude s and to gonal trar unctions	ent mus analyse asforma	the solutior tions.	n of the sy	stem of ec	quations	
 Finding maxima and mir Course Outcomes: After le Write the matrix represe Find the Eigen values an Reduce the quadratic for Analyse the nature of sec Solve the applications or Evaluate the improper in Find the extreme values 	nima of function of two an earning the contents of thi intation of a set of linear ed d Eigen vectors m to canonical form using quence and series. In the mean value theorems tegrals using Beta and Ga of functions of two variab	s paper quation g orthog s. mma fu les with	the stude s and to gonal trar unctions n/ withou	ent mus analyse asforma at constr	the solutior tions. raints.			-	
 Finding maxima and mir Course Outcomes: After le Write the matrix represe Find the Eigen values an Reduce the quadratic for Analyse the nature of sec Solve the applications or Evaluate the improper in Find the extreme values 	hima of function of two an earning the contents of thi ntation of a set of linear ed d Eigen vectors m to canonical form using quence and series. In the mean value theorems tegrals using Beta and Ga of functions of two variab	s paper quation g orthog s. mma fu les with	the stude s and to gonal tran unctions n/ withou	ent mus analyse asforma at constr ic; Skev	the solutior tions. raints. w-Hermitian	n; orthogo	nal matric	ces; Unit	
	hima of function of two an earning the contents of thi intation of a set of linear ed d Eigen vectors m to canonical form using quence and series. In the mean value theorems tegrals using Beta and Ga of functions of two variab	s paper quation g orthog s. mma fu les with Skew- Jormal	the stude s and to gonal trar inctions n/ withou symmetr form, In	ent mus analyse asforma at constr ic; Skev	the solutior tions. raints. w-Hermitian	n; orthogo ular matri	nal matric ces by G	ces; Unit	

UNIT – II: Eigen values and Eigen vectors

Eigen values and Eigen vectors: Linear Transformation and Orthogonal Transformation: Eigen values and Eigenvectors and their properties: Diagonalization of a matrix; Cayley-Hamilton Theorem (without proof); finding inverse and power of a matrix by Cayley-Hamilton Theorem; Quadratic forms and Nature of the Quadratic Forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation

UNIT - III: Sequences & Series

Sequence: Definition of a Sequence, limit; Convergent, Divergent and Oscillatory sequences. Series: Convergent, Divergent and Oscillatory Series; Series of positive terms; Comparison test, p-test, D-Alembert's ratio test; Raabe's test; Cauchy's Integral test; Cauchy's root test; logarithmic test. Alternating series: Leibnitz test; Alternating Convergent series: Absolute and Conditionally Convergence.

UNIT – IV: Calculus

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem. Taylor's Series. Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT – V: Multivariable calculus (Partial Differentiation and applications)

Definitions of Limit and continuity. Partial Differentiation; Euler's Theorem; Total derivative; Jacobian; Functional dependence & independence, Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

Text Books:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

Reference Books:

- 1. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 2. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11thReprint, 2010.
- 3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition, Pearson, Reprint, 2002.

Web References:

- 1) SWAYAM Online Courses: <u>https://storage.googleapis.com/uniquecourses/online.html</u>
- 2) Directory of Open Access Journals: <u>https://doaj.org/</u>
- 3) Springer Open Journals: <u>https://www.springeropen.com/journals</u>
- 4) UG/PG MOOCs: <u>http://ugcmoocs.inflibnet.ac.in/ugcmoocs/moocs_courses.php</u>

E-Text Books:

- 1) National Digital Library: <u>https://ndl.iitkgp.ac.in/</u>
- 2) NCERT Text Books: <u>http://ncert.nic.in/textbook/textbook.htm</u>
- 3) Directory of Open Access Books: <u>https://www.doabooks.org/</u>

PH103BS: ENGINEERING PHYSICS

B. Tech. I Year Course Code	Category		Hours/W	aak	Credits	M	vimum M	arke
PH 103BS	BSC	L	T	Р	Creans	Maximum Marks CIA SEE Tot		
ГП 105D5	DSC			_	_			
<u> </u>		3			4	<u>30</u>	70	100
Contact	Tutorial		Practica	l Classes: N	N11	Total C	lasses :60	
Classes:45	Classes:15	1 D1 '	136.4					
	Intermediate leve	el Physic	es and Mat	nematics				
COURSE OBJ								
To make the stu		41	-houism of	mbrusia al ba	dia		f formand an	41
	in knowledge on			1 .	dies upon u	ie action (of forces of	i them
	derstand differer arn on the nature	• 1			different to	nos of wo	VOS	
	et familiarized wi							
	derstand the met							are
COURSE OUT		nous or	production	i or lasers a		Sheepts of	optical no	615
	on of this course t	ha stude	nte will be	able to				
	ply the fundamer				olve numer	ical proble	eme	
± .	plain the characte		1			icai proble	-1115	
	scribe the propag			V 1		s		
	press the basic id					5		
	cribe different ty					pagation of	f light thro	ugh fiber
	RODUCTION				ies une prop	uguion o	i iigiit tiiro	<u>"Bii iio ci</u>
					antion Erro	a in Matu	Norton	· . 1
	of scalars and ve eness in describin							
1	ions of motion in	U I						•
-	lindrical and sphe	1		, Floblens n	neruding co	iistraints a		,
	RMONIC OSCI			_				
	electrical simple							ical and
	Energy decay in a							C
	electrical oscilla				-	s- Steady	state motio	on of
torced damped	harmonic oscillat	or, Pow	er absorbe	d by an osci	llator.			
$\underline{\mathbf{UNIT}} - \mathbf{III} : \mathbf{W}$	AVES IN ONE I	JIMEN	SION					

Transverse wave on a string- wave equation on a string- Harmonic waves, Reflection and transmission of waves at a boundary-Impedance matching -Standing waves and their Eigen frequencies-Longitudinal waves- wave equation- Acoustic waves and speed of sound, Standing sound waves.

UNIT - IV: WAVE OPTICS

Huygens' principle-Superposition of waves- Interference of light by the division of wave front and amplitude -Young's double slit experiment-Newton's rings, Michelson's interferometer- Fraunhofer diffraction from a single slit and circular aperture, Diffraction grating- Grating Spectrum- Rayleigh's criterion- Resolving power.

UNIT - V: LASERS AND FIBER OPTICS

Lasers: Introduction to interaction of radiation with matter, Coherence, Principle and working of Laser, Population inversion, Pumping, Types of Lasers: Ruby laser, Carbon dioxide (CO2) laser, He-Ne laser, Applications of laser. Fiber Optics: Introduction, Optical fiber as a dielectric wave guide, Total internal reflection, Acceptance angle, Acceptance cone and Numerical aperture, Step and Graded index fibers, Losses associated with optical fibers, Applications of optical fibers.

TEXT BOOKS:

- 1. MK Harbola, Vijaykrishna&Madhumohan, "Engineering Physics"- Cengage Learning, 2018.
- 2. HJ Pain, "The physics of vibrations and waves", Wiley, 2006

REFERENCEBOOKS:

- 1. IG Main, "Vibrations and waves in physics', 3rd ed., Cambridge University Press, 2018.
- 2. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.
- 3. MK Verma, "Introduction to Mechanics", Universities Press
- 4. AjoyGhatak, "Optics", McGraw Hill Education, 2012.
- 5. MK Harbola, "Engineering Mechanics", 2nd ed., Cengage Learning

WEBREFERENCES:

- 1. http://link.springer.com/book
- 2. http://www.thphys.physics.ox.ac.uk
- 3. http://www.sciencedirect.com/science
- 4. <u>http://www.e-booksdirectory.com</u>

E -TEXT BOOKS:

- 1. http://www.peaceone.net/basic/Feynman/
- 2. http://physicsdatabase.com/free-physics-books/
- 3. http://www.damtp.cam.ac.uk/user/tong/statphys/sp.pdf
- 4. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html

CS103ES: PROGRAMMING FOR PROBLEM SOLVING

B. Tech. I Year I Semester								
Course Code	Category	Hours/Week			Credits	Maximum Marks		
CS103ES	ESC	L	Τ	Р	С	CIA	SEE	Total
	Contact Classes: 45Tutorial Classes: 15Practical Classes: Nil30Tot							100
Contact Classes: 45	Tutorial Classes: 15	Pr	actica	l Classe	es: Nil	Total	Classes:	60
Prerequisite: Basic knowled	dge of Computer							
Course Objectives:								
•	rious steps in program develo	opmen	t.					
	nd semantics of C programmi							
	f structured programming app			ving pro	blems.			
	gramming approach in progra							
• To understand and le	earn the concept of derived dat	ta typ	es.					
Course Outcomes:								
• To write algorithms a	and to draw flowcharts for sol	lving	problei	ms.				
• To convert the algori	thms/flowcharts to C program	ns.	L					
6	ven logic in C programming l	0	0					
1 1	blem into module (functions)		o devel	op mod	ular reusable	code.		
• To use derived data t	type to write advances C prog	rams.						
UNIT – I: COMPUTER F	UNDAMENTALS AND INT	FROF	DUCT	ION TO	C LANGU	AGE		
-	ts of a computer system: disl		•		•	ry, proce	ssor, ope	rating
• • • •	compiling and executing a pr	0			•			
Introduction to Algorithms	s: steps to solve logical and nu	umeri	cal pro	blems.	Representatio	on of Alg	orithm,	
Flowchart/Pseudo code with	examples, Program design an	nd stru	ictured	l progra	mming.			
Introduction to C Program	nming Language: variables (v	with d	lata typ	bes and	space require	ments), S	Syntax an	ıd
Logical Errors in compilatio	n, object and executable code	e, Ope	erators,	, expres	sions and pre	cedence,	Expressi	on
evaluation, Storage classes (auto, extern, static and registe	er), typ	be conv	version,	,			
The main method and com	-							
Bitwise operations: Bitwise	AND, OR, XOR and NOT o	perato	ors					
-	d Loops: Writing and evaluation	-		tionals a	and conseque	nt branch	ning with	if. if-
	erator, go to, Iteration with fo						0	,
	t with scanf and printf, formation				-	hout and	stderr	
no. Simple input and outpu	e with scall and print, forma	licu I/	, ши	oductio	n to stain, su	aout and	50011.	

UNIT – II: Derived Data Types

Arrays: one and two dimensional arrays, creating, accessing and manipulating elements of arrays **Strings**: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings

Structures: Defining structures, initializing structures, unions, Array of structures

Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-referential structures, usage of self referential structures in linked list(no implementation) **Enumeration data type**

UNIT - III: Files

Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef**Files**: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

UNIT - IV: Functions

Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries

Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions **Dynamic memory allocation**: Allocating and freeing memory, Allocating memory for arrays of different data types

UNIT - V: Applications of Arrays & Analysis of algorithms

Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number, etc.

Basic searching in an array of elements (linear and binary search techniques),

Basic algorithms to sort array of elements (Bubble, Insertion, Selection, Quick and Merge sort algorithms)

Stack using Arrays and Queue using Arrays

Basic concept of order of complexity through the example programs

Text Books:

- 1. Byron Gottfried, Schaum's Outline of Programming with C,McGraw-Hill
- 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning,

(3rdEdition)

Reference Books:

- 1. 'C Programming: A Modern Approach (2nd Edition)' by K. N.King
- 2. Let us c by YawanthKanetkar
- 3. Programming in C, Stephen G. Kochan, Fourth Edition, PearsonEducation.
- 4. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall ofIndia
- 5. R.G. Dromey, How to solve it by Computer, Pearson (16thImpression)
- 6. Programming in C, Stephen G. Kochan, Fourth Edition, PearsonEducation.
- 7. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4thEdition

Web References:

- 1. https://github.com/EbookFoundation/free-programming-books/blob/master/free- programming-books.md#c
- 2. https://publications.gbdirect.co.uk//c_book/

E-Text Books:

1. https://books.goalkicker.com/CBook/

2.http://www2.cs.uregina.ca/~hilder/cs833/Other%20Reference%20Materials/The%20C

%20Programming%20Language.pdf

3. https://www.stormingrobots.com/prod/tutorial/pdf/kingBook-ch1to10.pdf

_

ME104ES : ENGINEERING GRAPHICS

B.Tech. I Year I Semester									
Course Code	Category	Hours/Week Credits Maximum					num Mar	·ks	
ME104ES	ESC	L	Т	Р	С	CIA	SEE	Total	
		1	0	4	3	30	70	100	
Contact Classes: 15								75	
Prerequisite: NIL									
• To impart knowled	oncepts in engineering drav ge about standard principle views and pictorial views o	es of ort	0	phic p	projection ofo	bjects.			
 Course Outcomes: At the end of the course, the student will be able to: Preparing working drawings to communicate the ideas and information. Read, understand and interpret engineering drawings. UNIT – I 									
Principles of Engineering Grap Rectangular Hyperbola – Ger Diagonal. UNIT – II Principles of Orthographic P	neral method only. Cycloi rojections – Conventions	id, Epic	ycloic ection	l and	Hypocycloid		– Plain &	č	
Projections of Plane regular ge	cometric figures.—Auxina	ry Plane	28.						
Projections of Regular Solids Solids – Prism, Cylinder, Pyra	•					ght Regu	lar		
UNIT – IV									
Development of Surfaces of Intersection of Solids: Intersec			-		•	Cone,			
UNIT – V									
Isometric Projections: Princi -Conventions – Isometric Vie objects having non- isometric Orthographic Views and Vice- Introduction to CAD: (For In Introduction to CAD Softwar Sketches by CAD Package.	ws of Lines, Plane Figures lines. Isometric Projectic versa – Conventions nternal Evaluation Weigl	s, Simpl on of S _l htage or	e and pheric nly)	Comj al Pai	pound Solids rts. Conversio	– Isomet on of Ison	metric Vi		

Text Books

- 1. Engineering Drawing N.D.Bhatt/Charotar.
- 2. Engineering Drawing / N. S. Parthasarathy and VelaMurali/Oxford.

Reference Books

- 1. Engineering Drawing / Basant Agrawal and McAgrawal/McGrawHill.
- 2. Engineering Drawing/ M. B. Shah, B.C. Rane/Pearson.
- 3. Computer Aided Engineering Drawing K Balaveera Reddy et al –CBSPublishers.

Web References:

1.http://www.ndl.iitkgp.ac.in/

E-Text Books:

- 1. http://www.pdfdrive.com/engineering-drawing-books.html
- 2. http://www.examupdates.in/engineering-drawing-text-book/

PH106BS: ENGINEERING PHYSICS LAB

Course Code	Category	He	ours/We	ek	Credits	Maximum Mark				
PH 106 BS	Core	L	T	Р	С	CIA	SEE	Tot al		
		-	-	3	1.5	30	70	100		
Contact Classes: Nil	Tutorial Classes: Nil	I	Practical	Classes	s: 45	Tota	Classes	: 45		
Prerequisite: Nil										
COURSE OBJECTIV	ES:									
To make the student										
	lge by applying the experim									
	ge of mechanical, electrical			tical syst	tems for vari	ous meas	urement	s.		
	alytical techniques to the expression ability while we	1								
-	munication skills while wo	rking in a	group							
COURSE OUTCOME		ha ahla 4	-							
	is course the student will			ovolling	miaroscono	diffracti	on arotin	a on		
	t sets of measuring tools lide's apparatus, diffraction									
Fiber optic kit	ue s'apparatus, unifiaction	graning, co	Supred of	scillator,	, Torsional p	endurum,	LUK	cun,		
-	nt physical quantities from	the obser	ved mea	uremen	ts and intern	ret throug	ah aranhi	cal		
methods	nt physical quantities from		veu mea	suremen	ts and merp	ict unouz	sii grapii	Cai		
	perimental results with thei	r theoreti	cal count	erparts						
		i uneoreu	car count	-			rotory			
	sic communication skills th	rough wo	rking in	groups i	n performing	y the labo				
experiments and	sic communication skills th by interpreting the results	rough wo	rking in	groups i	n performing	g the labo	ratory			
	sic communication skills the by interpreting the results	rough wo	rking in	groups i	n performing	g the labo	Tatory			
List of Experiments:	by interpreting the results			groups i	n performing	g the labo				
List of Experiments: 1) Dispersive pow	by interpreting the results er of the material of a prism	n – Specti	cometer		n performing	g the labo				
List of Experiments: 1) Dispersive power 2) Determination of	by interpreting the results er of the material of a prism of wavelengths of white sou	n – Specti urce – Dif	cometer fraction		n performing	g the labo				
List of Experiments: 1) Dispersive power 2) Determination of 3) Newton's Rings	by interpreting the results er of the material of a prism of wavelengths of white sou s – Radius of curvature of H	n – Specti urce – Dif Plano conv	rometer fraction vex lens		n performing	g the labo				
List of Experiments: 1) Dispersive power 2) Determination of 3) Newton's Rings 4) Melde's experiment	by interpreting the results er of the material of a prism of wavelengths of white sou s – Radius of curvature of F ment – Transverse and long	n – Specti urce – Dif Plano conv	rometer fraction vex lens		n performinş	g the labo				
List of Experiments: 1) Dispersive power 2) Determination of 3) Newton's Rings 4) Melde's experiment 5) Coupled Oscilla	by interpreting the results er of the material of a prism of wavelengths of white sou s – Radius of curvature of F ment – Transverse and long	n – Specti urce – Dif Plano conv	rometer fraction vex lens		n performing	g the labo				
List of Experiments: Dispersive power Determination of Newton's Rings Melde's experiments Coupled Oscillation L-C-R circuit – 	by interpreting the results er of the material of a prism of wavelengths of white sou s – Radius of curvature of H ment – Transverse and long ator	n – Specti urce – Dif Plano conv	rometer fraction vex lens		n performing	g the labo				
List of Experiments: Dispersive power Determination of Newton's Rings Melde's experir Coupled Oscilla L-C-R circuit – Torsional pendu 	by interpreting the results er of the material of a prism of wavelengths of white sou s – Radius of curvature of F ment – Transverse and long ator Resonance & Q-factor	n – Spectr urce – Dif Plano conv gitudinal r	rometer fraction vex lens		n performinş	g the labo				
List of Experiments: Dispersive power Determination of Newton's Rings Melde's experiments Coupled Oscillation L-C-R circuit – Torsional pendution Laser Diffraction 	by interpreting the results er of the material of a prism of wavelengths of white sou s – Radius of curvature of F nent – Transverse and long ntor Resonance & Q-factor Ilum – Rigidity modulus	n – Spectr urce – Dif Plano con gitudinal r ength	rometer fraction vex lens nodes		n performin	g the labo				
List of Experiments: Dispersive powe Determination of Newton's Rings Melde's experiments Coupled Oscilla L-C-R circuit – Torsional pendut Laser Diffraction Calculation of a 	by interpreting the results er of the material of a prism of wavelengths of white sou s – Radius of curvature of H ment – Transverse and long ator Resonance & Q-factor alum – Rigidity modulus on-Determination of Wavel	n – Spectr urce – Dif Plano conv gitudinal r ength n optical f	rometer fraction vex lens nodes		n performin	g the labo				

List of Equipment Required:			
Name of the Equipment		Quantity	
Spectrometers	:	6	
Diffraction Gratings	:	6	
Prisms	:	8	
Sodium Vapour lamps	:	2	
Mercury Vapour Lamps	:	2	
Newton's Rings-Sets	:	6	
Melde's Apparatus	:	6	
Stewart- Gee's Apparatus	:	6	
Circular Brass Discs	:	8	
Coupled Oscillators	:	6	

Text Books:

- 1. C. L. Arora, "Practical Physics", S. Chand & Co., New Delhi, 3rd Edition, 2012.
- 2. Vijay Kumar, Dr. T. Radhakrishna, "Practical Physics for Engineering Students", S M Enterprises, 2nd Edition, 2014
- 3 Y. Aparna, K. Venkateswarao, "Engineering Physics Lab Manual", VGS Book links 2010

Reference Books:

- 1. C.F. Coombs, "Basic Electronic Instrument Handbook", McGraw-Hill Book Co., 1972.
- 2. C.H. Bernard and C.D. Epp, John Wiley and Sons, "Laboratory Experiments in College Physics" Inc., New York, 1995.

Web References:

- 1. https://www.scribd.com/doc/143091652/engineering-physics-lab
- 2. https://www3.nd.edu/~wzech/LabManual_0907c.pdf
- 3. https://www.morebooks.de/store/gb/book/engineering-physics-lab-manual/isbn/
 - 978-3-330-34402.

CS106ES : PROGRAMMING FOR PROBLEM SOLVING LAB

B.T	ech. I Year II Semester								
	Course Code	Category	H	ours/W	eek	Credits	Max	Marks	
	CSIMES	ESC	L	Т	Р	С	CIA	SEE	Total
	CS106ES	ESC	0	0	3	1.5	30	70	100
	Contact Classes: 0	ontact Classes: 0 Tutorial Classes: 0 Practical Classes:45 Total Class						es:45	
Pre	requisite: Basic Knowle	dge of Computer	·						
Cou	Irse Objectives: The stud	lents will learn the following:							
•	To work with an IDE to	o create, edit, compile, run and	debug	program	IS				
•	To analyze the various	steps in program development	•						
•	To develop programs statements etc.	to solve basic problems by	understa	anding	basic co	oncepts in	C like	operators	s, control
•		usable and readable C Program			ncepts li	ke function	ns, arrays	s etc.	
•	1 0	ng the Dynamic Memory Alloc		oncept.					
•	To create, read from an	d write to text and binary files							
For	all the Programs writing	ng Algorithm and drawing F	low cha	rt is Ma	andator	у.			
List	t of Experiments:								
Bas	ic programs								
1.		n that prints the results of all	-			in C (incl	uding pr	e/ post ii	ncrement,
		. Read required operand value			-				
2.	Write a simple program values form standard in	that converts one given data	type to	another	using a	uto convei	rsion and	l casting.	Take the
3.		put. vert temperature from Fahrenh	eit to C	elsius a	nd vise	versa			
<i>4</i> .	1 0	s with a floor height of 3 meter					ne top of	the build	ling. Find
		ball to reach each floor. (Use							
	•	and acceleration in m/sec^2 (=				,			
5.	•	nd simple and compound inter							
6.	Write a C program to fi	nd Gross salary of an Employe	ee.						
Dec	ision Making statement	S							
1.	e	nd the max and min from the t	hree nu	mbers u	sing if-e	else			
2.	1 0	ich takes two integer operands			-		performs	the oper	ation and
		Consider the operators $+,-,*,/,$						une open	unon unu
3.	-	lares Class awarded for a give					ark <40%	6= Faile	d, 40% to
		50% to $<70%$ =First class, $>=7$							
4.		nd the roots of a Quadratic equ							
5.		nd grade of a student using els							
6.	C program to read week	day number and print weekda	y name	using sv	witch.				
Loo	D :								

```
1. Write a program that prints a multiplication table for a given number and the number of rows in the table. For
example, for a number 5 and rows = 3, the output should be:
5 \ge 1 = 5
5 \ge 2 = 10
5 x 3 = 15
2. Write a C program to print the following patterns:
             *
 1
                         1
                                     1
 12
             * *
                         23
                                     22
                         456
                                     333
 123
             * * *
                                                  * *
                                     4444
                                                  *
a. 1
                           b. 1
                                                                         1
                                                                c.
                                                                         22
  23
                               01
                               101
                                                                         333
 456
78910
                              0101
                                                                        4444
                             10101
                                                                        55555
      *
 d.
     ***
   *****
  ******
  *******
  ******
   *****
     ***
      *
3. Find the sum of the series
  a. 1^2+2^2+3^2+4^2+....+N^2
                                             b. 1/2 - 2/3 + 3/4 - 4/5 + 5/6 - \dots n
  c. 1-X^2/2!+X^4/4!- .....
                                             d. 1-x/2 + x^2/4 - x^3/6 .....
Loop with Decision making Statements:
     Write a program that shows the binary equivalent of a given positive number between 0 to 255.
1.
     Write a program that finds if a given number is a prime number
2.
3.
     Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.
     A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent
4.
     terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n
     terms of the sequence.
     Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
5.
     Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:
6.
     1+x+x^2+x^3+\dots+x^n. For example: if n is 3 and x is 5, then the program computes 1+5+25+125.
     Write a C program to print all Perfect numbers between 1 to n.
7.
```

8. C program to print all Armstrong numbers from 1 to N.

Function

- 1. Write a C program to calculate factorial of a given number using function & recursion.
- 2. Write a C Program for call by value & call by reference.
- 3. Write a C program to calculate GCD of two number using function & recursion.
- 4. Write a C program to calculate LCM of two number using function & recursion.
- 5. Write a C program to find xⁿ using recursion.
- 6. Write a C program o find minimum and maximum value from given two values using a macro.
- 7. Write a C program to demonstrate the storage classes.
- 8. Write a C program to demonstrate pre processor commands.

Arrays

- 1. Write a C program to find the minimum, maximum and average in an array of integers.
- 2. Write a functions to compute mean, variance, Standard Deviation, sorting of n elements in single dimension array.
- Write a C program that uses functions to perform the following:
 i. Addition of Two Matrices
 ii. Multiplication of Two Matrices
- 4. Write a C program to merge to arrays into a single array.
- 5. Write a C program to implement Stack using array.
- 6. Write a C program to implement Queue using array.

Sorting and Searching:

- 1. Write a C program that uses non recursive function to search for a Key value in a given list of integers using linear search method.
- 2. Write a C program that uses non recursive function to search for a Key value in a given sorted list of integers using binary search method.
- 3. Write a C program that implements the Bubble sort method to sort a given list of integers in ascending order.
- 4. Write a C program that sorts the given array of integers using selection sort in descending order
- 5. Write a C program that sorts the given array of integers using insertion sort in ascending order
- 6. Write a C program that sorts the given array of integers using merge sort and quick sort in ascending order

Pointers & Dynamic Memory Allocation

- 1. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be same.
- 2. Write a program for reading elements using pointer into array and display the values using array.
- 3. Write a program for display values reverse order from array using pointer.
- 4. Write a program through pointer variable to sum of n elements from array.

Strings:

- 1. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.
- 2. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent
- 3. Write a C program that uses functions to perform the following operations:
 - a. To insert a sub-string in to a given main string from a given position.
 - **b.** To delete n Characters from a given position in a given string.
- 4. Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)
- 5. Write a C program that displays the position of a character ch in the string S or -1 if S doesn't contain ch.

- 6. Write a C program to count the lines, words and characters in a given text.
- 7. Write a C program that sorts a given array of names

Structures

- 1. Define a structure for Student with Sno, Sname, marks of three subjects, avg. Write a C program to read 4 students information and display grade of the student.
- 2. Define a structure called books with book name, author, price, pages, and edition. Write a C program to read and display a book information using pointer.
- 3. Define a structure for complex number. Write functions on complex numbers (addition, subtraction, multiplication, division, complex conjugate) and implement them in a menu driven style.

Files:

- 1. Write a C program to display the contents of a file to standard output device.
- 2. Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.
- 3. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.
- 4. Write a C program that does the following:
- It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function) Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use fseek function) The program should then read all 10 values and print them back.
- 5. Write a C program to merge two files into a third file (i.e., the contents of the firs t file followed by those of the second are put in the third file).
- 6. Write a C program to display first n characters of a file in reverse order.

List of Equipment/Software (with Specifications or Range) Required:

A Computer System with Ubuntu operating system and GCC Compiler

References

- 1. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition)
- 3. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
- 4. Hall of India
- 5. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
- 6. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 7. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition

MC107ES: ENVIRONMENTAL SCIENCE

B.Tech. I Year I Semester		•			-			
Course Code	Category	Hou	rs/Week	Σ.	Credits	Max	imum N	Aarks
MC107ES	МС	L	Т	P	С	CIA	SEE	Total
MC107ES	MC	3	-	-	0	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil Total Classes:					es: 45	
Prerequisite: Nil								

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

Course Outcomes:

• Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I: Ecosystems

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Bio magnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II: Natural Resources & Energy resources

Natural Resources: Classification of Resources: Living and Non-Living resources, **water resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT - III: Biodiversity And Biotic Resources

Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and eco system diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT – IV: Environmental Pollution and Control Technologies

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management.

Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary. Overview of air pollution control technologies, Concepts of bioremediation.

Global Environmental Issues and Global Efforts: Climate change and impacts on human environment. Ozone

depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-GoI Initiatives.

UNIT – V: Environmental Policy, Legislation & EIA

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio-economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP).

Towards Sustainable Future: Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

Text Books:

1 Textbook of Environmental Studies for Undergraduate Courses by ErachBharuchafor University Grants Commission.

2 Environmental Studies by R. Rajagopalan, Oxford University Press.

Reference Books:

1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.

2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.

3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.

4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.

5. Text book of Environmental Science and Technology - Dr. M. Anji Reddy 2007, BS Publications.

Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.

Web References:

1.Fundamental concepts in Environmental Studies by Dr.D.D Mishra

2.Basis of Environmental Science by MichealAllaby

E-Text Books:

1.[ebook] A Text Book of environmental studies by Shashi Chawla - Meripustak.com

2. [ebook] A Text Book of environmental studies by Dr.D.K.Asthana https://books.google.co.in

MC108: BUSINESS ENGLISH

B.Tech. I Year I Semeste	r							
Course Code	Category	H	lours/Wee	ek	Credits	Ma	ximum I	Marks
MC108/208	МС	L	Т	P	С	CIA	SEE	Total
		2	0	0	2	30	70	100
Contact Classes: 30	Tutorial Classes: NIL		Practica				tal Class	es: 30
Prerequisite: Knowledge of	functional English, basics in gr	rammar	, understa	nding of	f LSRW skills			
Course Objectives: The course aims to illustrate learning in the context of glo	the significance of communicat balization.	tion in p	profession	al life a	nd emphasize	the need	for contin	nuous
 Comprehend the given tex Communicate confidently 	ectively in spoken and written f ts and respond appropriately in in various contexts and differen in English including reading an ofessional contexts.	n formal nt cultur	res.			1 speaking	g skills to) perform
UNIT – I: COMMUNICAT	ION							
Making Inferences, Visualizing Listening: A conversation on pl Writing: Filling in an application Speaking: Breaking the Ice, JA Vocabulary: Word Formation UNIT – II: DEVELOPMEN Reading: Reading between the Listening: Listening to an Inter Writing: Letters- responding to Speaking: Role Play: How to m Vocabulary: Synonyms and An	hone, Listening to a travel anecdot on form, Writing emails M sessions n: Homophones, Homonyms, H NT AND TRAINING Lines, Reading and answering a qu view on Radio, A conversation bet an invitation, letter of enquiry, let take decisions, Giving the summar tonyms, One-word substitutes	te Homogr uiz tween co tter of ap	aphs olleagues			ing the ma	in Idea, Q	uestioning,
UNIT - III: CORPORATE	CULTURE							
Reading: Reading beyond the li Listening: Working in Teams, 7 Writing: A memo asking for su Speaking: Discussion- How to	nes, An article on the power of cu	;s y?	' opinions o	online				
UNIT – IV: BEING PERSU								
Listening: What makes people Writing: A survey report, Com	rtant when making a presentation,	ale at a ti	rade fair					

UNIT – V: THINKING GLOBALLY

Reading: Thinking outside the box, Reading and comparing two articles, Ways of using social media Listening: Thinking Globally, Social Media and Customers, Netiquette Writing: Mail for a Job application

Speaking: How to use social media for your professional enhancement

Vocabulary: Avoiding Clichés, Idioms and Phrases

Reference Books:

- 1. New International Business English Updated Edition Workbook, Cambridge University Press.
- 2. Swan, M. (2016). Practical English Usage. Oxford University Press.
- 3. Kumar, S and Lata, P.(2018). Communication Skills. Oxford University Press.
- 4. Wood, F.T. (2007).Remedial English Grammar. Macmillan.
- 5. Zinsser, William. (2001). On Writing Well. Harper Resource Book.
- 6. Hamp-Lyons, L. (2006). Study Writing. Cambridge University Press.
- 7. Exercises in Spoken English. Parts I -III. CIEFL, Hyderabad. Oxford University

Press.

Web References:

- 1. www.elt.oup.com/learning resources
- 2. www.cambridgeenglishonline.org
- 3. www.eslcafe.com
- 4. www.bbc.co.uk/worldservice/learningenglish
- 5. <u>www.manythings.org</u>

E-Text Books:

1. The secret to perfecting your grammar - Bloomsbury International

MA201BS: MATHEMATICS – II

(ADVANCED CALCULUS & ELEMENTARY COMBINATORICS) (Common to CE, EEE, ME, ECE, CSE, IT, AI, AI&ML, DSE)

Course Code	Category	Hour	s/Week		Credits	Maxi	imum N	Iarks
MA201BS	BSC	L	Т	Р	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15		ctical Cl	asses	: Nil	Tota	l Classe	es: 60
Prerequisite: Mathematical K	nowledge of 12 th / Intermed	diate level						
Course Objectives: To learn • Methods of solving the diffe • Evaluation of multiple integ • The physical quantities invo • The basic properties of vect • Concept of Recurrence Rela	rals and their applications plved in engineering field re or valued functions and the	elated to ve ir applicati	ector valu			olume in	tegrals	
 Solve higher differential equ Evaluate the multiple integr sphere and rectangular paralle Evaluate the line, surface ar Apply the concepts of advantage 	als and apply the concept to elopiped ad volume integrals and con	o find areas	s, volum	es, cei	ntre of mass	-		cubes,
UNIT – I: First Order ODE								
Exact, linear and Bernoulli's Equations not of first degree Clairaut's type.								
UNIT – II: Ordinary Differ	ential Equations of Higher	r Order						
Second order linear differentiation of the second order linear differentiation and the second	(x) and x (x); method of	variation of	of param					
UNIT – III: Multivariable C	Calculus (Integration)							
Evaluation of Double Integra form); Evaluation of Triple In								

and Cylindrical polar coordinates) for triple integrals.

Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals), Centre of mass and Gravity (constant and variable densities) by double and triple integrals (applications involving cubes, sphere and rectangular parallelopiped).

UNIT – IV: Vector calculus

Gradient, Divergence, Curl, Line integral, conservative fields, Green's theorem, surface area of solids of revolution, surface area, surface integral, Triple integrals and Gauss Divergence theorem, Stokes' theorem (without proofs)

UNIT - V: Counting (Recurrence Relations & Elementary Combinatorics)

Basic counting, Pigeonhole principle, Permutations and Combinations, Binomial Coefficients, Application of Recurrence Relations, Solution of Recurrence Relations, Generating functions, Inclusion – Exclusion and applications

Text Books:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
- 2. Kenneth H. Rosen, Discrete Mathematics and Its Applications, McGrawHill.

Reference Books:

- 1. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition, Pearson, Reprint, 2002.
- 3. Higher Engineering Mathematics by B V Ramana, TataMcGraw-Hill
- 4. Discrete Mathematics for Computer Scientists and Mathematicians by Joe R. Mott, AbrahamKandel, Theodore P. Baker, Prentice-Hall of India Pvt.Ltd.

Web References:

- 1. SWAYAM Online Courseshttps://storage.googleapis.com/uniquecourses/online.html
- 2. Directory of Open Access Journalshttps://doaj.org/
- 3. Springer Open Journalshttps://www.springeropen.com/journals
- 4. UG/PG MOOCshttp://ugcmoocs.inflibnet.ac.in/ugcmoocs/moocs_courses.php

E-Text Books:

- 1. National Digital Library:https://ndl.iitkgp.ac.in/
- 2. NCERT Text Bookshttp://ncert.nic.in/textbook/textbook.htm
- 3. Directory of Open Access Bookshttps://www.doabooks.org/

CH202BS: ENGINEERING CHEMISTRY

Course Code	Category	Hours/	Week		Credits	Maxi	mum M	larks
CH202BS	Basic Sciences	L	Т	P	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practic	al Clas	ses: N	Nil	Tota	l Classe	s: 60
Prerequisite: Nil								
Course Objectives:								
• To bring adaptability	to the concepts of chemis	stry and to	acquire	e the	required s	kills to	become	a perfec
engineer.								
• To impart the basic kr understand the technol	lowledge of atomic, molect logy based on them.	ular and elec	etronic	modi	fications w	hich ma	ikes the	student t
• To acquire the knowl	edge of electrochemistry,	corrosion a	and wa	ter tr	eatment w	hich are	essenti	al for th
Engineers and in indus								
-	ledge of stereochemistry	and synthe	etic asj	pects	useful fo	r under	standing	reactio
pathways.								
• To acquire the knowle	dge of preparation, propert	ies and appl	ication	s of e	ngineering	; materia	lls.	
Course Outcomes: The basic	1		-		0			
6	mic, molecular and electror	0		•			•	
	es and concepts of electro	chemistry,	corrosi	on ar	nd in unde	rstandin	g the pr	oblem o
water and its treatmen								
•	figurational and conformat	•					echanisr	ns.
• The knowledge of pre	paration, properties and app	plications of	engine	eering	g materials.			
UNIT – I: MOLECULAR S	TRUCTURE AND THE	DRIES OF	BOND	ING				
Atomic and Molecular orbitals	, Linear Combination of Ato	omic orbitals	(LCAC), m	olecular ort	itals of o	liatomic	molecules
molecular orbital energy level								
Crystal Field Theory (CFT):								

UNIT – II: WATER AND ITS TREATMENT

Water and its treatment: Introduction – hardness of water – Causes of hardness - Types of hardness: temporary and permanent – expression and units of hardness – Estimation of hardness of water by complexometric method. Potable water and its specifications. Steps involved in treatment of water – Disinfection of water by chlorination and ozonization. Boiler feed water and its treatment – Calgon conditioning, Phosphate conditioning and Colloidal conditioning. External treatment of water – Ion exchange process. Desalination of water – Reverse osmosis. Numerical problems

UNIT - III: ELECTROCHEMISTRY AND CORROSION

Electro Chemistry: Electro chemical cells – electrode potential, standard electrode potential, types of electrodes – calomel, Quinhydrone and glass electrode. Nernst equation Determination of pH of a solution by using quinhydrone and glass electrode. Electrochemical series and its applications. Numerical problems. Potentiometric titrations. Batteries – Primary

(Lithium cell) and secondary batteries (Lead – acid storage battery and Lithium ion battery).

Corrosion:Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current cathodic methods. Surface coatings – metallic coatings – methods of application. Electroless plating of Nickel.

UNIT – IV: STEREOCHEMISTRY, REACTION MECHANISM AND SYNTHESIS OF DRUGMOLECULES

Introduction to representation of 3-dimensional structures, Structural and stereoisomers, configurations, symmetry and chirality. Enantiomers, diastereomers, optical activity and Absolute configuration. Conformation analysis of n- butane. Substitution reactions: Nucleophilic substitution reactions: Mechanism of S_N1 , S_N2 reactions.

Electrophilic and nucleophilic addition reactions: Addition of HBr to propene. Markownikoff and Anti

Markownikoff's additions. Grignard additions on carbonyl compounds.

Elimination reactions: Dehydrohalogenation of alkylhalides. Saytzeffrule.

Oxidation Reactions: Oxidation of alcohols using KMnO₄ and chromic acid. Reduction reactions: Reduction of carbonyl compounds using LiAlH₄, NaBH₄. Hydroboration of olefins. Structure, synthesis and pharmaceutical applications of Paracetamol and Aspirin.

UNIT – V: MATERIAL SCIENCE (POLYMERS, COMPOSITE MATERIALS CERAMICS AND COMPOSITE MATERIALS) & SPECTROSCOPY

POLYMERS: Introduction, classification, Types of polymerization, Thermoplastics and thermosetting polymers, synthesis and applications of poly vinyl chloride, Bakelite, nylon 6,6

COMPOSITE MATERIALS: Composites - Constitution, classification, Particle reinforced composites, Fiberreinforced composites, Metal-matrix composites, Carbon-carbon composites Structural composites, Advantages and applications.

CERAMICS: Different types of ceramic crystal structures, Clay products, Advanced ceramics, Ceramic ball bearings, Cements.

SPECTROSCOPY: Introduction to spectroscopy, IR spectra and its applications

Text Books:

- 1. A TEXT BOOK OF ENGINEERING CHEMISTRY BY DR S.S DHARA & DR.K.MUKKANTI. (S. Chand Publications)
- 2. A TEXT BOOK OF ENGINEERING CHEMISTRY BY DR BHARATHI KUMARI YALAMANCHALI. (V G S Techno Series)

Reference Books:

1. Physical Chemistry, by P.W.Atkins

- 2. Organic Chemistry: StructureandFunctionbyK.P.C. VolhardtandN.E.Schore, 5thEdition.
- 3. University Chemistry, by B.M. Mahan, Pearson IVEdition.

Web References:

1. Engineering Chemistry (NPTEL Web-book), by B.L. Tembe, Kamaluddin and M.S.Krishnan.

2. Engineering Chemistry by P. C. Jain & M. Jain; Dhanpat Rai Publishing Company (P)Ltd., NewDelhi.

E-Text Books:

- 1. [ebook] Central library IIT Indore (www.library.iiti.ac.in)
- 2. [ebook]Chemistry by Royal Society of Chemistry (https://www.rsc.org>ebooks)

ME203ES: ENGINEERING MECHANICS

Course Code	Category	Hours	s/Week		Credits	Maxi	mum Ma	arks
ME203ES	ESC	L	Т	Р	С	CIA	SEE	Total
ME205E5	ESC	3	1	0	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pra	ctical C	lasses:	0	Total	Classes	: 60
 Explain the equations of Perform ana Locate the c standard and Explain kine plane motion Explain the motion and Course Outcomes: At the Determine r system of fo Find the loc Understand motion and Solve proble solve proble UNIT – I Introduction to Engineerin Body equilibrium; System Forces and its Applicatio diagrams, Equations of Ec UNIT – II Friction: Types of friction friction, screw jack & diff Centroid and Centre of G 	bijectives of this course are resolution of a system of fe equilibrium lysis of bodies lying on ro- entroid of a body and com l composite sections etics and kinematics of par n of rigid bodies. concepts of work-energy n the concept of vibrations e end of the course, student esultant of forces acting or orces. And, solve problem of ation of centroid and calcu the kinetics and kinematics rigid body motion. ems using work energy equens of vibration. mg Mechanics - Force Systen n of Forces, Coplanar Cor n; Couples and Resultant quilibrium of Coplanar Systen , Limiting friction, Laws of erential screw jack; aravity -Centroid of Lines, y and its implications – Th	orces, con ugh surfa pute the a ticles, pro- nethod an ts will be n a body a of bodies late morr s of a bod ations fo tems: Bas neurrent 1 of Force stems and of Frictior , Areas a	aces. area mo ojectiles ad its ap able to and anal subjecto and on anal subjecto or transla or transla sic conces, System Solutian n, Static nd Volu	ment of c, curvil plicatio lyse equ ed to fri nertia o rgoing 1 ation, fi cepts, P Compo n, Equi System and Dy umes fr	f inertia and n inear motion, ons to translati uilibrium of a iction. of a given sect rectilinear, cu xed axis rotat article equilib onents in Spa librium of Sy ns; Static Inde	nass mom centroida ion, rotatio body subj tion. rvilinear, tion and p orium in 2 ce – Resu ystem of H eterminacy	ent of ind I motion on and pl jected to rotatory lane mot -D & 3- iltant- M Forces, F y.	and ane a ion and D; Rigio oment o Pree body
Area Moment of Inertia: I	Definition, Moment of inertia of standard sections an	-			-	-		

Review of particle dynamics - Rectilinear motion; Plane curvilinear motion (rectangular, path, And polar

coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique).

UNIT – V

Kinetics of Rigid Bodies -Basic terms, general principles in dynamics; Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work Energy principle and its application in plane motion of connected bodies; Kinetics of rigid body rotation.

Text Books:

- 1. Shames and Rao (2006), Engineering Mechanics, Pearson Education.
- 2 Reddy Vijay Kumar K. and J. Suresh Kumar (2010), Singer's Engineering Mechanics Statics&Dynamics.

Reference Books

- 1. Timoshenko S.P and Young D.H., "Engineering Mechanics", McGraw Hill International Edition, 1983.
- 2. Engineering Mechanics by Dhubay, TMH
- 3. Hibbeler R.C & Ashok Gupta, "Engineering Mechanics", Pearson Education, 2010.
- 4. Meriam. J. L., "Engineering Mechanics", Volume-II Dynamics, John Wiley & Sons, 2008.
- 5. Andrew Pytel, JaanKiusalaas, "Engineering Mechanics", Cengage Learning, 2014.
- 6. BeerF.P & Johnston E.RJr.Vector, "MechanicsforEngineers", TMH, 2004.
- 7. Tayal A.K., "Engineering Mechanics Statics & Dynamics", Umesh Publications, 2011.
- 8. BasudebBhattacharyya, "EngineeringMechanics", OxfordUniversityPress, 2008.

Web References

- 1. https://nptel.ac.in/courses/112/106/112106286/
- 2. https://ndl.iitkgp.ac.in/

E-Text Books

- 1. <u>https://books.google.co.in/books?id=AOY9fiIkB9AC&printsec=frontcover&source=gbs_ge_summary_r&c_ad=0#v=onepage&q&f=false</u>
- 2. <u>https://drive.google.com/file/d/1Z53SsmbaRAbhutHQAF7SeKM5vsZTEm/view</u>

ME205ES: ENGINEERING WORKSHOP

ME205ES ESC 1 0 3 2.5 30 70 1 Contact Classes: 15 Tutorial Classes: 0 Practical Classes: 45 Total Classes: 60 Prerequisite: Practical Skill Course Objectives: • To study of different hand operated power tools, uses and their demonstration. • To gain a good basic working knowledge required for the production of various engineering products. • To provide hands on experience about use of different engineering materials, tools, equipment's and processes those are common in the engineering field. • To develop a right attitude, team working, precision and safety at workplace. • It explains the construction, function, use and application of different working tools, equipment and machines. • To study commonly used carpentry joints. • To study commonly used carpentry joints. • To study and practice on machine tools and their operations • Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. • Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. • Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. • Totaudy and acities. • Totaudy	Course Code	Category	Hou	rs/Week	Σ.	Credits	Maxin	num Mai	rks
Image: Contact Classes: 15 Image: Classes: 0 Practical Classes: 45 Total Classes: 60 Prerequisite: Practical Skill Course Objectives: • • To study of different hand operated power tools, uses and their demonstration. • • To study of different hand operated power tools, uses and their demonstration. • • To study of different hand operated power tools, uses and their demonstration. • • To gain a good basic working knowledge required for the production of various engineering products. • • To provide hands on experience about use of different engineering materials, tools, equipment's and processes those are common in the engineering field. • To develop a right attitude, team working, precision and safety at workplace. • It explains the construction, function, use and application of different working tools, equipment and machines. • To study commonly used carpentry joints. • To study and practical exposure to various welding and joining processes. • Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: • • • • Practiceonmantifacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. • Identify and apply suitabl	ME205ES	FSC	L	Т	P	С	CIA	SEE	Tota
 Prerequisite: Practical Skill Course Objectives: To study of different hand operated power tools, uses and their demonstration. To gain a good basic working knowledge required for the production of various engineering products. To provide hands on experience about use of different engineering materials, tools, equipment's and processes those are common in the engineering field. To develop a right attitude, team working, precision and safety at workplace. It explains the construction, function, use and application of different working tools, equipment and machines. To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiccommanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and			1	•	-	2.5			100
 To gain a good basic working knowledge required for the production of various engineering products. To provide hands on experience about use of different engineering materials, tools, equipment's and processes those are common in the engineering field. To develop a right attitude, team working, precision and safety at workplace. It explains the construction, function, use and application of different working tools, equipment and machines. To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	ontact Classes: 15	Tutorial Classes: 0	Practical	Classes	: 45		Total Cl	asses: 60	
 To study of different hand operated power tools, uses and their demonstration. To gain a good basic working knowledge required for the production of various engineering products. To provide hands on experience about use of different engineering materials, tools, cquipment's and processes those are common in the engineering field. To develop a right attitude, team working, precision and safety at workplace. It explains the construction, function, use and application of different working tools, equipment and machines. To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. TRADES FOR EXERCISES: Atleast two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	Prerequisite: Practical S	Skill							
 To gain a good basic working knowledge required for the production of various engineering products. To provide hands on experience about use of different engineering materials, tools, equipment's and processes those are common in the engineering field. To develop a right attitude, team working, precision and safety at workplace. It explains the construction, function, use and application of different working tools, equipment and machines. To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	Course Objectives:								
 engineering products. To provide hands on experience about use of different engineering materials, tools, equipment's and processes those are common in the engineering field. To develop a right attitude, team working, precision and safety at workplace. It explains the construction, function, use and application of different working tools, equipment and machines. To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. ITRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	To study of	f different hand operated j	power tools,	uses and	d their o	demonstratio	on.		
 To provide hands on experience about use of different engineering materials, tools, equipment's and processes those are common in the engineering field. To develop a right attitude, team working, precision and safety at workplace. It explains the construction, function, use and application of different working tools, equipment and machines. To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. ITRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	• To gain a g	good basic working knowl	edge require	ed for the	e produ	ction of vari	ous		
 equipment's and processes those are common in the engineering field. To develop a right attitude, team working, precision and safety at workplace. It explains the construction, function, use and application of different working tools, equipment and machines. To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. ITRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 									
 To develop a right attitude, team working, precision and safety at workplace. It explains the construction, function, use and application of different working tools, equipment and machines. To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. ITRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 							s, tools,		
 It explains the construction, function, use and application of different working tools, equipment and machines. To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. ITRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 		-		-		-			
 tools, equipment and machines. To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. ITRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	-	-			-	-			
 To study commonly used carpentry joints. To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. I. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	L .		i, use and ap	plication	1 OT 011	terent worki	ng		
 To have practical exposure to various welding and joining processes. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. ITRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray & Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 			iointe						
 Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. 1. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 				nd ioinin	a nroce				
 prescribed tolerances. Course Outcomes: At the end of the course, the student will be able to: Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. 1. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	-	-	-				work to		
 Study and practice on machine tools and their operations Practiceonmanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. I. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 				lieusuimį	5 equip	ment and to	work to		
 Practiceonnanufacturingofcomponentsusingworkshoptradesincludingpluming, fitting, carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. 1. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	Course Outcomes: At th	ne end of the course, the s	tudent will b	be able to):				
 carpentry, foundry, house wiring and welding. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. I. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	Study and	practice on machine tools	and their op	perations					
 Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. 1. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 		0 1	0	hoptrade	sincludi	ingpluming, f	fitting,		
 including drilling, material removing, measuring, chiseling. Apply basic electrical engineering knowledge for house wiring practice. I. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 			-						
 Apply basic electrical engineering knowledge for house wiring practice. 1. TRADES FOR EXERCISES: At least two exercises from each trade: 1. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) 2. Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) 3. Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) 4. Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) 5. Welding Practice – (Arc Welding & Gas Welding) 6. House-wiring – (Parallel & Series, Two-way Switch and Tube Light) 7. Black Smithy – (Round to Square, Fan Hook and S-Hook) 						ring processe	es		
 1. TRADES FOR EXERCISES: At least two exercises from each trade: Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	<u> </u>			-	-				
 At least two exercises from each trade: 1. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) 2. Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) 3. Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) 4. Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) 5. Welding Practice – (Arc Welding & Gas Welding) 6. House-wiring – (Parallel & Series, Two-way Switch and Tube Light) 7. Black Smithy – (Round to Square, Fan Hook and S-Hook) 	Apply dash	c electrical engineering ki	nowledge 10	or nouse	wiring	practice.			
 Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Ten on Joint) Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	TRADES FOR EXER	CISES:							
 Fitting – (V-Fit, Dovetail Fit & Semi-circular fit) Tin-Smithy – (Square Tin, Rectangular Tray &Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	At least two exerc	cises from each trade:							
 Tin-Smithy – (Square Tin, Rectangular Tray & Conical Funnel) Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 		· •			on Join	nt)			
 Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	U			·					
 Welding Practice – (Arc Welding & Gas Welding) House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	•								
 House-wiring – (Parallel & Series, Two-way Switch and Tube Light) Black Smithy – (Round to Square, Fan Hook and S-Hook) 	•	· 1		0 0	le Piec	e and Split F	'attern)		
7. Black Smithy – (Round to Square, Fan Hook and S-Hook)	e	· 6		0/	Tube I	(ight)			
2. TRADES FOR DEMONSTRATION & EXPOSURE:		U	•						
2. TRADES FOR DEMONSTRATION & EXPOSURE:					,				
Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working				\ D					

Text Books:

- 1. Workshop Practice /B. L. Juneja/Cengage
- 2. Workshop Manual / K.Venugopal/Anuradha.

Reference Books:

- 1. Work shop Manual P. Kannaiah/ K. L. Narayana/SciTech
- 2. Workshop Manual /Venkat Reddy/BSP

EN205HS: ENGLISH

B.Tech. I Year II Semester

Course Code	Category Hours/W		rs/We	eek	Credits	Maxi	imum I	Marks
ENOASHS	USMC	L	T P C		CIA	SEE	Total	
EN205HS	HSMC	2	0	0	2	30	70	100
Contact Classes: 30	Tutorial Classes: - Practical Classes: Nil Total Classes							es: 30
Prerequisite Knowledge of functi	onal English basics in gramm	ar unde	retand	ing of	I SRW skil	10		

Prerequisite: Knowledge of functional English, basics in grammar, understanding of LSRW skills

Course Overview:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire language skills, the syllabus of English has been designed to develop linguistic, communicative and critical thinking competencies of Engineering students.

In English classes, the focus should be on the skills development in the areas of vocabulary, grammar, reading and writing. For this, the teachers should use the prescribed text for detailed study. The students should be encouraged to read the texts leading to reading comprehension and different passages may be given for practice in the class. The time should be utilized for working out the exercises given after each excerpt, and also for supplementing the exercises with authentic materials of a similar kind, for example, newspaper articles, advertisements, promotional material etc. The focus in this syllabus is on skill development, fostering ideas and practice of language skills in various contexts and cultures.

Course Objectives:

The course will help to

- Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- Equip students to study academic subjects more effectively and critically using the theoretical and practical components of English syllabus.
- Develop study skills and communication skills in formal and informal situations.

Course Outcomes:

Students should be able to

- Use English Language effectively in spoken and written forms.
- Comprehend the given texts and respond appropriately.
- Communicate confidently in various contexts and different cultures.
- Acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills

UNIT – I: The Raman Effect

Vocabulary Building: The Concept of Word Formation -- The Use of Prefixes and Suffixes.

Grammar: Identifying Common Errors in Writing with Reference to Articles and

Parts of Speech

Reading: Reading and Its Importance- Techniques for Effective Reading.

Basic Writing Skills: Sentence Structures -Use of Phrases and Clauses in Sentences-

Importance of Proper Punctuation- Techniques for writing precisely - Paragraph writing -

Types, Structures and Features of a Paragraph - Creating Coherence-Organizing Principles of Paragraphs in Documents.

UNIT - II: Ancient Architecture in India

Vocabulary: Synonyms and Antonyms.

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun

Agreement and Subject-verb Agreement.

Reading: Improving Comprehension Skills – Techniques for Good Comprehension

Writing: Format of a Formal Letter-Writing Formal Letters E.g., Letter of Complaint, Letter of Requisition, Job Application with Resume.

UNIT – III: Blue Jeans

Vocabulary: Acquaintance with Prefixes and Suffixes from Foreign Languages in English to form Derivatives-Words from Foreign Languages and their Use in English.

Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.

Reading: Sub-skills of Reading- Skimming and Scanning

Writing: Nature and Style of Sensible Writing- Defining- Describing Objects, Places and Events – Classifying-Providing Examples or Evidence

UNIT - IV: What Should You Be Eating

Vocabulary: Standard Abbreviations in English

Grammar: Redundancies and Clichés in Oral and Written Communication.

Reading: Comprehension- Intensive Reading and Extensive Reading

Writing: Writing Practices--Writing Introduction and Conclusion - Essay Writing-Précis Writing

UNIT – V: How a Chinese Billionaire Built Her Fortune

Vocabulary: Technical Vocabulary and their usage

Grammar: Common Errors in English

Reading: Reading Comprehension-Exercises for Practice

Writing: Technical Reports- Introduction – Characteristics of a Report – Categories of Reports Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing a Report.

Text Book:

1. Sudarshana, N.P. and Savitha, C. (2018). English for Engineers. Cambridge UniversityPress.

Reference Books:

- 1. Swan, M. (2016). Practical English Usage. Oxford University Press.
- 2. Kumar, S and Lata, P.(2018). Communication Skills. Oxford University Press.
- 3. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
- 4. Zinsser, William. (2001). On Writing Well. Harper Resource Book.
- 5. Hamp-Lyons, L. (2006). Study Writing. Cambridge University Press.
- 6. Exercises in Spoken English. Parts I –III. CIEFL, Hyderabad. Oxford UniversityPress.

Web References:

- 1. www.cambridgeenglishonline.org
- 2. www.eslcafe.com
- 3. <u>www.bbc.co.uk/worldservice/learningenglish</u>

E-Text Books:

1. The secret to perfecting your grammar - Bloomsbury International

CH206BS: ENGINEERING CHEMISTRY LAB

Course Code	Category	Ho	ours/We	ek	Credits	Max	imum N	larks
CH206BS	BSC	L	Т	Р	С	CIA	SEE	Tota
		-	-	3	1.5	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	P	ractical	Classe	s: 45	Tota	al Classe	es: 45
Prerequisite: Nil								
 student. The student will lea Estimation of hardness and To determine the rate cons The measurement of physic To synthesize the drug motechnique. List of Experiments: Determination of total ha Determination of chlorida Estimation of an HCl by Pote Estimation of HCl by Pote Estimation of Fe2+ by Pote Synthesis of Aspirin and Determination of freundlich Determination of viscos Determination of surfact To synthesis of Aspirin and 	d chloride content in water to stant of reactions from concen- cal properties like adsorption lecules and check the purity of rdness of water by complexor e content of water by Argento Conductometric titrations by Conductometric titrations of conductometric titrations entiometric titrations otentiometry using KMnO4 Paracetamol ue of coconut oil a dsorption isotherm-adsorpti ity of ground nut oil by using on coefficient of acetic acid be e tension of a give liquid usin hy calculation of Rf values. e instant of acid catalysed hydro re (with Specifications or Ra IETER	check its trations a and visco of organic metric me metry ion of ace Ostwald ² etween n- g stalagm g ortho an lysis of n	suitabili s an fun osity. molecu thod usi thod usi thod usi outanol outanol outanol nometer. nd para n nethylac	ity for d ction of les by t ng EDT on char neter. and wa nitrophe	Frinking purp f time. hin layer chr TA	oose.		
3. WATER DISTILLA								
4. WATER BATH								
5. TLC CHAMBER								
 UV CHAMBER SHAKER BATH 								

EN207HS: ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB

B.TECH I YEAR II SEM	IESTER							
COURSE CODE	CATEGORY	но	URS/W	'EEK	CREDITS		MAXI MAH	
EN207HS	HSMC	L	Т	Р	C	CIA	SEE	TOTAL
EN207115		0	0	2	1	30	70	100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 30 Total Classes : 30								
PREREQUISITES: Knowledge of functional English, basics in grammar, understanding of LSRW skills								
Course Objectives:								
To facilitate comput	ter-assisted multi-media i	nstruct	ion enat	oling ind	lividualized and	l indepe	endent la	nguage
learning								
• To sensitize student	s to the nuances of Englis	sh spee	ch soun	ds, word	l accent, intona	tion and	l rhythm	
• To bring about a con	nsistent accent and intelli	gibility	in stud	ents' pro	onunciation of l	English	by provi	iding an
opportunity for practice in speaking								
• To improve the flue	ncy of students in spoken	Englis	sh and n	eutralize	e their mother t	ongue ii	nfluence	
-	use language appropriate	-				C		

COURSE OUTCOME:

Students will be able to attain

Better understanding of nuances of English language through audio- visual experience and group activities

- Neutralization of accent for intelligibility
- Speaking skills with clarity and confidence which in turn enhances their employability skills

SYLLABUS

English Language and Communication Skills Lab (ELCS) shall have two parts:

a. Computer Assisted Language Learning (CALL) Lab

b. Interactive Communication Skills (ICS) Lab

Listening Skills

Objectives

1. To enable students develop their listening skills so that they may appreciate its role in

the LSRW skills approach to language and improve their pronunciation

2. To equip students with necessary training in listening so that they can comprehend the

speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to

recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills

Objectives

1. To involve students in speaking activities in various contexts

2. To enable students express themselves fluently and appropriately in social and

professional contexts

- Oral practice: Just A Minute (JAM) Sessions
- Describing objects/situations/people
- Role play Individual/Group activities

Module: I

CALL Lab:

Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers of Listening.

Practice: Introduction to Phonetics - Speech Sounds - Vowels and Consonants.

ICS Lab:

Understand: Communication at Work Place- Spoken vs. Written language.

Practice: Ice-Breaking Activity and JAM Session- Situational Dialogues - Greetings -

Taking Leave – Introducing Oneself and Others.

Module: II

CALL Lab:

Understand: Structure of Syllables - Word Stress and Rhythm- Weak Forms and Strong Forms in Context.

Exercise-I

Exercise-II

Exercise-III

Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms in Context.

ICS Lab:

Understand: Features of Good Conversation – Non-verbal Communication.

Practice: Situational Dialogues - Role-Play- Expressions in Various Situations - Making

Requests and Seeking Permissions - Telephone Etiquette.

Module: III

CALL Lab:

Understand: Intonation-Errors in Pronunciation-the Interference of Mother Tongue (MTI).

Practice: Common Indian Variants in Pronunciation - Differences in British and American Pronunciation.

ICS Lab:

Understand: How to make Formal Presentations.

Practice: Formal Presentations.

Module: IV	Exercise-IV
CALL Lab:	
Understand: Listening	for General Details.
Practice: Listening C	omprehension Tests.
ICS Lab:	

Understand: Public Speaking – Exposure to Structured Talks.

Practice: Making a Short Speech – Extempore.

Module: V	Exercise- V
CALL Lab:	

Understand: Listening for Specific Details.

Practice: Listening Comprehension Tests.

ICS Lab:

Understand: Interview Skills.

Practice: Mock Interviews.

Reference Books:

- 1. Swan, M. (2016). Practical English Usage. Oxford University Press.
- 2. Kumar, S and Lata, P.(2018). Communication Skills. Oxford University Press.
- 3. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
- 4. Zinsser, William. (2001). On Writing Well. Harper Resource Book.
- 5. Hamp-Lyons, L. (2006). Study Writing. Cambridge University Press.
- 6. Exercises in Spoken English. Parts I -III. CIEFL, Hyderabad. Oxford University Press.

Web References:

- 1. www.elt.oup.com/learning resources
- 2. www.cambridgeenglishonline.org
- 3. www.eslcafe.com
- 4. www.bbc.co.uk/worldservice/learningenglish
- 5. <u>www.manythings.org</u>

E-Text Books:

2. The secret to perfecting your grammar - Bloomsbury International

MC209: PYTHON PROGRAMMING

B.Tech I Year II Semester								
Course Code	Category	H	ours/W	'eek	Credits		Maxi Ma	
MC209	МС	L	Т	Р	С	CIA	SEE	Total
MC20)	NIC.	2	0	1	0	30	70	100
Contact Classes:30	Tutorial Classes: Nil		Pract	ical Clas	sses:15	Т	'otal Cla	asses :45

PREREQUISITES: A course on "Python Programming".

COURSE OBJECTIVE:

At the end of the course students should be able to:

- 1. To learn how to use lists, tuples, and dictionaries in Python programs.
- 2. To learn how to write loops and decision statements in Python.
- 3. To learn how to read and write files in Python.
- 4. To learn how to use exception handling in Python applications for error handling.

COURSE OUTCOME:

At the end of the course students will be able to:

- 1. Explain basic principles of Python programming language.
- 2. Create, run and manipulate Python Programs using core data structures like Lists, Tuple, Set and
- 3. Dictionaries.
- 4. Understand and summarize different File handling operations.
- 5. Handle exceptions in programming.

UNIT – I

Algorithms, building blocks of algorithms (statements, state, control flow), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms. Python Basics, Features of Python, Python Applications, Installing and running Python with Different IDEs, Comments in Python, Memory Management in Python, Garbage Collection in Python, Python I/O : Printing to the Screen, Reading Keyboard Input.

UNIT – II

Operators in Python: Arithmetic, Relational and Comparison Operators, Python Assignment Operators, Logical Operators and Bitwise Operators, Membership Operators, Identity Operators, Operator Precedence and Associativity, Evaluating Expressions. Control Statements: A Word on Indentation, The if Statement, The if ... else Statement, The while Loop, The for Loop, Infinite Loops, Nested Loops, Loop manipulation using pass, continue, break and else Statement.

$\mathbf{UNIT} - \mathbf{III}$

Variables and Data Types in Python: How Python Sees Variables, Constants, Identifiers and Reserved words in Python, Naming Conventions in Python. Declaring and using Numeric data types: int, float, complex and boolean, Sequences: Using String data type, Lists and Tuples, Methods and Useful Built-in Functions, Dictionaries and Set Types

UNIT – IV

Python Programming using functions, modules and packages: Organizing python codes using functions, Formal and Actual Arguments, Positional Arguments, Keyword Arguments, Default Arguments, Variable Length Arguments, Pass by Object Reference, Local and Global Variables, Scope and Lifetime of variables, Nested Functions, Recursive

Functions, Powerful Lamda function.

$\mathbf{UNIT} - \mathbf{V}$

Python File Input-Output: Opening and closing file, Various types of file modes, reading and writing to files. Python Exception Handling: Avoiding code break using exception handling, Various keywords to handle exception, try .. except .. else ... finally, Raising Exceptions, Assertions, Python Custom

TEXT BOOKS:

- 1. Learning with Python3: How to Think Like a Computer Scientist, 3rd Edition Peter Wentworth, Jeffrey Elkner, Allen B. Downey and Chris Meyers
- 2. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist'', Shroff/O'Reilly Publishers.

REFERENCE BOOKS:

- 1. Introduction to Python for Computational Science and Engineering (A beginner's guide), Hans Fangohr.
- 2. Exploring Python, Timothy A. Budd, Mc Graw Hill Education
- 3. John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press
- 4. PYTHON PROGRAMMING, Ashok Kamthane and Amit Ashok kamthane

E TEXT BOOKS:

- 1. <u>https://www.davekuhlman.org/python_book_01.pdf</u>
- 2. https://www.pdfdrive.com/python-programming-for-the-absolute-beginner-d34494394.html
- 3. <u>http://index-of.es/Python/Exploring%20Python.pdf</u>

MC210: APTITUDE AND REASONING

B.Tech. I Year II Semester		•			-			
Course Code	Category	Hou	rs/Week	Σ.	Credits	Max	imum N	Aarks
MC210	МС	L	Т	P	С	CIA	SEE	Total
MC210	MC	3	-	-	0	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Pra	actical C	lasses	s: Nil	Tota	al Class	es: 45
Prerequisite: Nil								

Course Objectives:

This is a foundation course and aims at enhancing employability skills in students. Students will be introduced to higher order thinking skills and problem solving on the following areas - Arithmetic ability, Numerical ability and General reasoning. Students will be trained to work systematically with speed and accuracy while problem solving. The major areas covered in this course include

- 1. Arithmetic Ability
- 2. Numerical Ability
- 3. Quantitative Aptitude
- 4. Verbal Reasoning
- **5.** Logical reasoning
- 6. Visual Reasoning

Course Outcomes: Upon the completion of the course, students are expected to

- 1. Solve questions on the above mentioned areas using short cuts and smart methods
- 2. Understand the fundamentals concepts of Aptitude skills
- 3. Perform calculations with Speed & Accuracy
- 4. To improve Logical thinking.
- 5. To improve Application Knowledge

UNIT - I: ARITHMETIC ABILITY FOUNDATION

ARITHMETIC ABILITY FOUNDATION: Square root, Cube roots, Speed Maths using Vedic Maths, Surds & Indices, Logarithms Number Systems - Types of numbers, Divisibility tests, LCM and HCF, Unit digit, Number of zeroes, Factorial, No. of factors, Remainder concepts, Successive Divisors

UNIT - II: COMMERCIAL ARITHMETIC& ARITHMETIC ABILITY ADVANCED

COMMERCIAL ARITHMETIC: Percentages, Profit and Loss, Discount, Simple Interest & Compound Interest **ARITHMETIC ABILITY ADVANCED**: Time, Speed & Distance- Basics, Average Speed, Problems on Trains, Relative Speed, Boats & Streams, Races & Games, Circular Motion Time and work, Work & Wages, Chain Rule, Pipes and Cisterns

UNIT- III: BIODIVERSITY AND BIOTIC RESOURCES

ALGEBRA: Linear Equations, Quadratic Equations and In-equations, Averages, Ratio, Proportion & Variations, Ages, Partnership

LOGICAL REASONING: Statements & Conclusions, Statements & Course of Actions, Statements & Assumptions, Cause & Effect, Coded Inequalities, Syllogism, Input Output

UNIT – IV: MODERNAPTITUDE

MODERN APTITUDE - I: Permutations & Combinations, Circular Permutation, Probability, Area and Volumes. **MODERN APTITUDE - II**: Data Sufficiency, Data Interpretation – Line graph, Pie Charts, Bar graph

UNIT - V: VERBAL REASONING & VISUAL REASONING

VERBAL REASONING: Blood relations, Directions, Coding & Decoding, Number Ranking, Venn Diagrams, Alphanumeric Symbol Test, Mathematical operations. Series, Analogy, Classification, Analytical Reasoning - Information Ordering – Arrangements

VISUAL REASONING: Series, Analogy, Classification, Mirror & Water Images, Spotting out the Embedded figure, Pattern Incompletion, Paper Folding & Cutting, Analytical Figures, Cubes & Dice.

Text Books:

- 1. Quantitative Aptitude for Competitive Examinations Dr. R.S Aggarwal, S. Chand Publisher, English Medium, Revised & Enlarged Edition.
- 2. A Modern Approach to Verbal Reasoning (Fully Solved) Dr R.S Aggarwal, S. Chand Publisher, English Medium.
- 3. Environmental Studies by R. Rajagopalan, Oxford University Press.

Reference Books:

- 1. How to Prepare for Quantitative Aptitude for the CAT Arun Sharma, Publisher: Mcgraw Hill TP, 8th Edition, English Medium.
- 2. A Modern Approach to Verbal & Non-Verbal Reasoning Dr. R.S Aggarwal, S. Chand Publisher, English Medium, Revised Edition.
- 3. Quantitative Aptitude for All Competitive Examinations Abhijit Guha, Publisher: Mcgraw Hill, 3rd Edition, English Medium.
- 4. Quantitative Aptitude For Competitive Examinations Rao U. M. Karanam, Publisher: Scitech Publications (India) Pvt. Ltd, ISBN: 9788183714631, English Medium.
- 5. Course in Mental Ability and Quantitative Aptitude For Competitive Examinations Edgar Thorpe, Publisher: Tata McGraw Hill Education, 2nd Edition, English Medium.

MA301BS: PROBABILITY AND STATISTICS & COMPLEX VARIABLES

Course Code	Category	Hou	rs/Weel	K	Credits	Max	imum N	Aarks
NA 201DG	DCC	L	Т	P	С	CIA	SEE	Tota
MA301BS	BSC	3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15		ctical C	lasse	s: Nil	Tota	l Class	es: 60
Prerequisite: Mathematica	al Knowledge at pre-unive	rsity level						
Course Objectives: To lea	arn							
• The ideas of probab	oility and random variables	s and vario	ous disci	rete ar	nd continuo	us prob	ability	
distributions and th								
• The basic ideas of s	statistics including measure	es of centr	al tende	ency, c	correlation a	and regr	ession.	
• The statistical meth	ods of studying data samp	les.						
• Differentiation and	integration of complex va	lued funct	ions.					
• Evaluation of integ	rals using Cauchy's integr	al formula	and Ca	uchy'	s residue th	eorem.		
• Expansion of comp	lex functions using Taylor	's and Lau	irent's s	eries.				
Course Outcomes: After l	learning the contents of thi	s paper the	e studen	t mus	t be able to			
	e problems involving rand					nethods	for ana	lysing
experimental data.		om variab	les and	apply	statistical 1			
experimental data.Analyse the completion	ex function with reference	om variab	les and	apply	statistical 1			
experimental data.Analyse the completant and residue theorem	ex function with reference ns.	om variab to their an	les and alyticity	apply	statistical 1			
experimental data.Analyse the completant and residue theorem	ex function with reference	om variab to their an	les and alyticity	apply	statistical 1			
 experimental data. Analyse the complete and residue theorem Taylor's and Laures 	ex function with reference ns. nt's series expansions of c	om variab to their an	les and alyticity	apply	statistical 1			
 experimental data. Analyse the complete and residue theorem Taylor's and Laures UNIT – I: Basic Probabilities	ex function with reference ns. nt's series expansions of c ity, Random variables	om variab to their an omplex fu	les and alyticity	apply	statistical 1 gration usin	ng Cauc	hy's int	egral
experimental data.Analyse the complete and residue theorem	ex function with reference ns. nt's series expansions of c ity, Random variables ility spaces, conditional pr	om variab to their an omplex fu	les and alyticity nction. indeper	apply y, inte	statistical r gration usir events, and	ng Cauc	hy's int	egral

Probability distributions: Binomial, Poisson, evaluation of statistical parameters for these distributions, Poisson approximation to the binomial distribution Continuous random variables and their properties, distribution functions and density functions, Normal and exponential, evaluation of statistical parameters for these distributions.

UNIT – III: Testing of Hypothesis

Testing of Hypothesis: Test of significance: Basic of testing of Hypothesis. Null and alternate Hypothesis, types of errors, level of significance, critical region. Large sample test for single proportion, difference of proportions, single mean, difference of means; small sample tests: Test for single mean, difference of means and test for ratio of variances

UNIT - IV: Complex Variables (Differentiation)

Complex Variables (Differentiation): Limit, Continuity and Differentiation of Complex functions, Analyticity, Cauchy-Riemann equations (without proof), finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties.

UNIT – V: Complex Variables (Integration)

Complex Variables (Integration): Line integral, Cauchy's theorem, Cauchy's Integral formula, Zeros of analytic functions, Singularities, Taylor's series, Laurent's series; Residues, Cauchy Residue theorem, Conformal mappings, Mobius transformations and their properties.

Text Books:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2010.
- 2. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, keying Ye, Probability and statistics for engineers and scientists, 9th Edition, Pearson Publications.

Reference Books:

- 1. Fundamentals of Mathematical Statistics, Khanna Publications, S. C. Gupta and V. K. Kapoor.
- 2. Miller and Freund's, Probability and Statistics for Engineers, 8th Edition, Pearson Educations
- 3. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 4. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

Web References:

- 1. SWAYAM Online Courses https://storage.googleapis.com/uniquecourses/online.html
- 2. Directory of Open Access Journals https://doaj.org/
- 3. Springer Open Journals https://www.springeropen.com/journals
- 4. UG/PG MOOCs http://ugcmoocs.inflibnet.ac.in/ugcmoocs/moocs_courses.php

E-Text Books:

- 1. National Digital Library: https://ndl.iitkgp.ac.in/
- 2. NCERT Text Books http://ncert.nic.in/textbook/textbook.htm
- 3. Directory of Open Access Books https://www.doabooks.org/

ME302PC: MECHANICS OF SOLIDS

Course	Code	Category	H	ours/V	Week	Credits	I	Max Ma	nrks
MEQ	ADC.	0	L	Т	Р	С	CIA	SEE	Total
ME30	JZPC	Core	3	1	0	4	30	70	100
Contact C	lasses: 45	Tutorial Classes: 15		Prace	tical Cl	asses: 0	Tot	al Clas	ses: 60
Prerequisi	te: Enginee	ering Mechanics, Mathema	tics						
Cours	e Objective	es: This course will advance	the st	udent	s' deve	lopment of th	he follo	wing br	oad
capabi	lities:								
1.	Students v	will be able to understand bas	sic co	ncept	s of stre	ess, strain an	d their 1	relations	s based
		elasticity. Material behaviors			•	•	•		
2.		will be able to understand and						leforma	tion of
		an axial loading under unifo							
3.		will understand how to devel	_		oment	diagrams of	a beam	and find	l the
		n moment/shear and their loca							
4.	Students v	will understand how to calcul	late n	ormal	and she	ear stresses			
Course Ou	itcomes: Uj	pon successful completion of	f the o	course	e, studer	nts will be at	ble to:		
1.	Analyze t	he behavior of the solid bodi	es sul	ojecte	d to var	ious types of	floadin	g;	
2.	Apply know	owledge of materials and stru	ictura	l elen	nents to	the analysis	of simp	ole struc	tures;
3.	Undertake	e problem identification, form	nulati	on an	d soluti	on using arra	ange of	analytic	cal
	methods;								
4.	Analyze a	and interpret laboratory data	relatii	ng to l	oehavio	r of structure	es and tl	ne mate	rials
	they are n	nade of, and undertake associ	iated	labora	atory we	ork individua	ally and	in team	s.
5.	Expectation	on and capacity to undertake	lifelo	ong lea	arning.				
UNIT-I									
Elasticity a	and plasticity	y – Types of stresses & strain	ns–He	ooke's	s law– s	stress– strain	diagrar	n for m	ild stee
– Workin	g stress –	- Factor of safety – La	teral	strai	n, Pois	sson's ratio	& v	olumetr	icstrain
Elasticmod	luli&therela	tionshipbetweenthem-Barso	fvary	ingse	ction-c	omposite l	oars –	- Tem	peratu
stresses. St	rain energy	- Resilience - Gradual, sudo	len, i	mpact	and sh	ock loadings	5.		
UNIT-II								~ -	
		Types of beams – Concep				-			
-		er, simply supported and of		-	-	-	_		
		ds and combination of these	loads-	-Poin	t of con	tra flexure –	Relatio	on betwe	en S.F
ы. wi and ra	ue of loadin	g at a section of abeam.							

UNIT-III

Flexural Stresses: Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R Neutral axis – Determination bending stresses – section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections – Design of simple beam sections. **Shear Stresses:** Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I, T angle sections.

UNIT-IV

Principal Stresses and Strains: Introduction - Stresses on an inclined section of a bar under axial

loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear – Mohr's circle of stresses – Principal stresses and strains – Analytical and graphical solutions.

Theories of Failure: Introduction – Various theories of failure - Maximum Principal Stress Theory, Maximum Principal Strain Theory, Strain Energy and Shear Strain Energy Theory (Von Mises Theory). **UNIT-V**

Torsion of Circular Shafts: Theory of pure torsion – Derivation of Torsion equations: $T/J = q/r = N\theta/L$ -Assumptions made in the theory of pure torsion – Torsional moment of resistance – Polar section modulus – Power transmitted by shafts – Combined bending and torsion and end thrust – Design of shafts according to theories of failure.

Thin Cylinders: Thin seamless cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and Volumetric strains – changes in dia, and volume of thin cylinders– Thin spherical shells.

Text Books:

- 1. Strength Of Materials, by Ramamrutham S, Dhanpat Rai Publishing Company (P) Limited,
- 2. Strength of Materials by S. S. Rattan, Tata McGraw Hill Education Pvt. Ltd.

Reference Books:

- 1. Strength of Materials -By Jindal, Umesh Publications.
- 2. Solid Mechanics, by Popov
- 3. Strength of Materials Ryder. G.H.; Macmillan Long Man Pub.
- 4. Strength of Materials W.A. Nash, TMH
- 5. Analysis of structures by Vazirani and Ratwani.
- 6. Mechanics of Structures Vol –I by H. J. Shah and S. B. Junnarkar, Charotar Publishing House Pvt. Ltd.
- 7. Strength of Materials by D.S Prakash Rao, Universities Press Pvt. Ltd.
- 8. Fundamentals of Solid Mechanics by M. L. Gambhir, PHI Learning Pvt. Ltd
- 9. Strength of Materials by R.K Rajput, S. Chand & Company Ltd.
- 10. Strength of materials R.S. Kurmi and Gupta.

ME303PC: MATERIAL SCIENCE AND METALLURGY

Course Code	Category	H	Iours/	'Week	Credits	N	Aax Ma	rks
ME303PC	Core	L	Т	Р	С	CIA	SEE	Total
ME5051 C		3	0	0	3	30	70	100
Contact Classes: 45	Tutorial Classes: 0		Prac	tical Cla	sses: 0	Tot	al Class	ses: 45
Prerequisite: None								
	This course provides stud ials, the phase diagrams, a				-			
Course Outcomes: U	pon successful completion of	of the	course	e, studen	ts will be ab	le to:		
1. Identify the pr	operties of metals with resp	ect to	crysta	l structu	re and grain	size		
2. Interpret the p	hase diagrams of materials							
3. Describe the c	oncept of heat treatment of	steels	& stre	engthenii	ng mechanis	sms		
4. Describe the c	oncept of surface hardening	g of ste	els &	strength	ening mech	anisms		
5. Classify and D	Distinguish different types o	f cast i	irons,	steels an	d non ferro	us alloy	'S	
UNIT-I								
•	it cells, Metallic crystal str ne defects; dislocation str				•			
UNIT-II								
Allovs, substitutional	and interstitial solid solut	ions-	Phase	diagran	ns: Interpre	tation (of bina	y phas

Heat treatment of Steel: Annealing, Normalising, Hardening, Tempering and Spheroidising, Isothermal transformation diagrams for Fe-C alloys and microstructures development.

UNIT-IV

Continuous cooling curves (TTT) and interpretation of final microstructures and propertiesaustempering, martempering, subzero treatment, case or surface hardening, carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction hardening, vacuum and plasma hardening

UNIT-V

Alloying of steel, properties of stainless steel and tool steels, maraging steels- cast irons; grey, white, malleable and spheroidal cast irons- copper and copper alloys (Brass, bronze and cupro-nickel)-Aluminium and Al-Cu – Mg alloys- Titanium alloys.

Text Books :

1. V. Raghavan, "Material Science and Engineering', Prentice Hall of India Private Limited, 1999.

2. W. D. Callister, 2006, "Materials Science and Engineering-An Introduction", 6th Edition, WileyIndia

Reference Books :

- 1. Kenneth G. Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 4th Indian Reprint,2002.
- 2. U. C. Jindal, "Engineering Materials and Metallurgy", Pearson, 2011
- 3. Sidney H Avner, "Introduction to physical metallurgy", Second Edition, Tata McGraw-Hill Education
- 4. Narula, Narula & Gupta, "Material science", Tata McGraw-Hill Education, 1989

ME304PC: PRODUCTION TECHNOLOGY

B.Tech II year I seme Course Code	Category	Н	ours/	Week	Credits	T I	Max Ma	arks
Course Coue	Category	L	T	P	Creates	CIA	SEE	Total
ME304PC	Core	3	0	0	3	30	70	10tal
Contact Classes: 45	Tutorial Classes: 0		-		asses: 0		al Clas	
Prerequisite: None								
Course Objectives:								
Ū	ach the process-level depende	ence	of ma	nufactu	ring systems	through	ı tolerar	ICAS
	pose the students to a variety					-		
	apabilities.	or m	anura	ictuining	processes m	ciuding	ulen si	шаоппту
	ach the important effects that	manı	ufacti	iring nra	ocesses may	have or	n the ma	terial
	rties of the processed part wi				•			literrar
	ach the thermal and mechanic					-		
	erature of the most common		•	,		,	,	
5. To pr	ovide a technical understand	ing of	com	mon pro	cesses to aid	l in app	ropriate	process
select	ion for the material and requ	ired t	olera	nces			-	-
6. To pro	ovide a technical understand	ing of	com	mon pro	cesses to aid	l in app	ropriate	
mater	ial selection for a predetermi	ined p	proces	SS.				
	pon successful completion o					ble to:		
	rstand the idea for selecting r			-		.1		
	Types and allowances of pa	itterns	s used	in casti	ng and analy	ze the c	compon	ents of
moul 2 Desig		oveto	m in i	motol or	stingpropp			
-	n core, core print and gating	•						
	rstand the arc, gas, solid state						• 1	
	op process-maps for metal fo						-	
	fy the effect of process varia	bles t	o ma	nufactur	e defect free	produc	ts.	
UNIT-I								
-	iking a casting – Advantag			-				
•••	tials used for patterns, patter				•	•		
-	e melting and cupola oper				-	-		-
	s of gates, Design of gating sees–Types–Sand moulding,	-				-		
design. Casting proces	ses-1 ypes-sand mounding,	Centi	nuga	i castill	g, uie-castili	ig, mve	sument	casting

shell moulding; Solidification of casting – Solidification of pure metal, Directional Solidification.

UNIT-II

Classification – Types of welds and welded joints; Welding Positions - Gas welding - Types, oxy-fuel gas cutting – standard time and cost calculations. Arc welding, forge welding, submerged arc welding, Resistance welding, Thermit welding.

UNIT-III

Inert Gas Welding _ TIG Welding, MIG welding, Friction welding, Friction Stir Welding, induction welding, explosive welding, Laser Welding; Soldering and Brazing; Heat affected zone in welding. Welding defects – causes and remedies; destructive and non- destructive testing of welds

UNIT-IV

Hot working, cold working, strain hardening, recovery, recrystallisation and grain growth.

Sheet metal Operations: Stamping, Blanking and piercing, Coining, Strip layout, Hot and cold spinning – Bending and deep drawing. Rolling fundamentals – theory of rolling, types of Rolling mills and products. Forces in rolling and power requirements.

Drawing and its types – wire drawing and Tube drawing –. Types of presses and press tools. Forces and power requirement in the above operations

UNIT-V

Extrusion of Metals: Basic extrusion process and its characteristics. Hot extrusion and cold extrusion - Forward extrusion and backward extrusion – Impact extrusion – Extruding equipment – Tube extrusion, Hydrostatic extrusion. Forces in extrusion

Forging Processes: Forging operations and principles – Tools – Forging methods – Smith forging, Drop Forging – Roll forging – Forging hammers: Rotary forging – forging defects – cold forging, swaging, Forces in forging operations.

High Energy Rate Forming Processes: Limitations, Principles of Explosive Forming, Electrohydraulic Forming, Electro-magnetic forming and rubber pad Forming.

Text Books :

- 1. Manufacturing Technology / P.N. Rao Vol.1 & 2 / Mc GrawHill
- 2. Manufacturing Engineering & Technology / SeropeKalpakjian / Steven R. Schmid / Pearson

Reference Books :

- 1. Metal Casting / T.V Ramana Rao / NewAge
- 2. Production Technology / G. Thirupathi Reddy /Scitech
- 3. Manufacturing Processes/ J.P. Kaushish / PHIPublications

ME305PC: THERMODYNAMICS

Course Code	Category	Но	urs/V	Veek	Credits	Ν	Aax Ma	arks
ME305PC	Core	L	Т	Р	С	CIA	SEE	Total
WIE3031 C	Core	3	1	0	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15		Prac	tical (Classes: 0	Tot	al Clas	ses: 60
Prerequisite: Engine	ering Chemistry and Physic	CS .				·		
Course Objectives:								
	treatment of classical Therm	nodyn	namic	s and t	o apply the F	irst and	Second	laws of
Thermodynamics	to engineering applications	-						
	sses and to perform thermody d analyze the Thermodynam	·		•	lusta parform			
		5				lance pa	rameter	s.
UNIT-I System, Control Volu	ume, Surrounding, Boundar	ies, I	Unive	erse, T	ypes of Syst	tems, M	lacrosco	opic an
UNIT-I System, Control Volu Microscopic viewpoin Exact & Inexact Diff Causes of Irreversibili Work, Heat, Point an	ume, Surrounding, Boundar ts, Concept of Continuum, T ferentials, Cycle – Reversib ity – Energy in State and in d Path functions, Zeroth La ometry – Reference Points	ies, U Therm bility n Tra aw of	Unive nodyr – Qu nsitio f The	erse, T namic l nasi – on, Typ ermody	ypes of Syst Equilibrium, static Proces bes, Displaces namics– Cor	tems, M State, Pr ss, Irrev ment & ncept of	lacrosco roperty, ersible Other	opic an Proces Process forms c erature
UNIT-I System, Control Volu Microscopic viewpoin Exact & Inexact Diff Causes of Irreversibili Work, Heat, Point an Principles of Thermo Temperature, Ideal Ga	ume, Surrounding, Boundar ts, Concept of Continuum, T ferentials, Cycle – Reversib ity – Energy in State and in d Path functions, Zeroth La ometry – Reference Points	ies, I Therm bility n Tra aw of – C	Unive nodyr – Qu nsitio f The Const.	erse, T namic l nasi – n, Typ ermody Volu	ypes of Syst Equilibrium, static Proces es, Displacer namics– Cor me gas The	tems, M State, Pr ss, Irrev ment & ncept of ermomet	lacrosco roperty, ersible Other 1 Tempe er – S	opic an Process Process forms o erature cales o

Pure Substances, P-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point at critical state properties during change of phase, Dryness Fraction–Clausius–Clapeyron Equation

Property tables. Mollier charts – Various Thermodynamic processes and energy Transfer – Steam Calorimetry.

Perfect Gas Laws – Equation of State, specific and Universal Gas constants – various Non-flow processes, properties, end states, Heat and Work Transfer, changes in Internal Energy–Throttling and Free Expansion Processes – Flow processes

UNIT-IV

Deviations from perfect Gas Model – VaderWaals Equation of State – Compressibility charts – variable specific Heats – Gas Tables Mixtures of perfect Gases –Mole Fraction, Mass friction Gravimetric and volumetric Analysis–Dalton's Law of partial pressure, Avogadro's Laws of additive volumes – Mole fraction, Volume fraction and partial pressure, Equivalent Gas const. And Molecular Internal Energy, Enthalpy, sp.Heat and Entropy of Mixture of perfect Gases and Vapour, Atmospheric air-Psychrometric Properties – Dry bulb Temperature, Wet Bulb Temperature, Dew point Temperature, Thermodynamic Wet Bulb Temperature, Specific Humidity, Relative Humidity, saturated Air, Vapour pressure, Degree of saturation – Adiabatic Saturation, Carrier's Equation – Psychrometric chart.

UNIT-V

Power Cycles: Otto, Diesel, Dual Combustion cycles, Sterling Cycle, Atkinson Cycle, Ericsson Cycle, Lenoir Cycle – Description and representation on P–V and T-S diagram, Thermal Efficiency, Mean Effective Pressures on Air standard basis – comparison of Cycles.

Refrigeration Cycles:

Brayton and Rankine cycles – Performance Evaluation–combined cycles, Bell-Coleman cycle, Vapour compression cycle - performance Evaluation.

Text Books :

- 1. Engineering Thermodynamics / PK Nag / Mc GrawHill
- 2. Thermodynamics for Engineers / Kenneth A. Kroos ; Merle C. Potter/Cengage

Reference Books :

- 1. Engineering Thermodynamics / Chattopadhyay/Oxford
- 2. Engineering Thermodynamics / Rogers /Pearson
- 3. Treatise on Heat Engineering, by V.P. Vasandani and D.S. Kumar Metropolitan book Co Pvt Ltd , 2000

ME306PC: PRODUCTION TECHNOLOGY LAB

Course Code	Category	H	ours/We	ek	Credits	Max	imum N	Aarks
ME204DC	Como	L	Т	Р	С	CIA	SEE	Tota
ME306PC	Core	-	-	2	1	30	70	100
Contact Classes: N		I	Practical	Classe	s: 30	Tota	d Class	es: 30
Prerequisite: Produc	tion Technology							
Course Objectives:	out the basic Physical, Chemical P	roperties (of materi	ale				
	why some material(s) are better to l	•			on docion re	auiromo	ata	
-	basic operation of various manufa		-	t ioi giv	en design ie	quiteinei	115	
	w various products are made using			aditiona	1 or Flectro	nice man	ufacturi	na
Learn hove processes		uauniona	1, 11011-11	auniona	i, or Electro	mes man	uracturr	ng
-	mple process plans for parts and p	roducts						
-	nd how process conditions are set		ation of	product	ion			
	w CNC machines work			I				
	l execute CNC machining program	s to cut p	arts on a	milling	machine			
	a given manufactured part to evalu	-		-		sh		
	nd fabricate a simple product		,					
•	Minimum of 12 Exercises need to	be perfor	med					
I. Metal Casting		I						
1. P	attern Design and making - for on	e casting d	rawing.					
2. S	and properties testing - Exercise -	or strengt	hs, and p	ermeab	ility –1			
3. N	Ioulding Melting and Casting - 1E	xercise	-					
II. Welding Lab:								
1. ARC Welding	Lap & Butt Joint - 2Exercises							
2. Spot Welding -	1Exercise							
3. TIG Welding -	1Exercise							
4. Plasma welding	g and Brazing - 2Exercises (Water	Plasma D	evice)					
III. Mechanical P	ress Working:							
1. Blanking & Pie	ercing operation and study of simp	le, compo	und, and	progres	sive press to	ol.		
2. Hydraulic Pres	s: Deep drawing and extrusion ope	ration.						
3. Bending and of	her operations							
IV. Processing of	Plastics							
1. Injection Moul	ding							
2. Blow Moulding	2							

ME307PC: MACHINE DRAWING PRACTICE

Course Code	Category	Ho	urs/Wee	k	Credits	Maxi	mum Ma	arks
MEGOZDO	0	L	Т	Р	С	CIA	SEE	Total
ME307PC	Core	-	-	2	1	30	70	100
Contact	Tutorial Classes: Nil	Pra	ctical (Classes	: 30	Total	Classes	s: 30
Classes: Nil								
Classes: Nil Prerequisite: Enginee	ring graphics							

Course Objectives:

To familiarize with the standard conventions for different materials and machine parts in working drawings. To make part drawings including sectional views for various machine elements. To prepare assembly drawings given the details of part drawings.

Course Outcomes:

Preparation of engineering and working drawings with dimensions and bill of material during design and

development. Developing assembly drawings using part drawings of machine components.

Conventional representation of materials, common machine elements and parts such as screws, nuts, bolts, keys, gears, webs, ribs.

Types of sections – selection of section planes and drawing of sections and auxiliary sectional views. Parts not usually sectioned.

Methods of dimensioning, general rules for sizes and placement of dimensions for holes, centers, curved and tapered features.

Title boxes, their size, location, and details - common abbreviations and their liberal usage

Types of Drawings – working drawings for machine parts.

List of Experiments:

Drawing of Machine Elements and simple parts

Selection of Views, additional views for the following machine elements and parts with every drawing proportion.

- 1. Popular forms of Screw threads, bolts, nuts, stud bolts, tap bolts, setscrews.
- 2. Keys, cottered joints and knuckle joint.
- 3. Rivetted joints for plates
- 4. Shaft coupling, spigot and socket pipe joint.
- 5. Journal, pivot and collar and footstep bearings.

Assembly Drawings:

Drawings of assembled views for the part drawings of the following using conventions and easy drawing proportions.

- 1. Steam engine parts stuffing boxes, cross heads, Eccentrics.
- 2. Machine tool parts: Tail stock, Tool Post, Machine Vices.
- 3. Other machine parts-Screws jacks, Petrol engine connecting rod, Plummer block, Fuel Injector
- 4. Valves Steam stop valve, spring loaded safety valve, feed check valve and air cock.

TEXT BOOKS:

- Machine Drawing by / Bhattacharyya / Oxford
- Machine Drawing with Auto CAD / Goutham Pohit, Goutam Ghosh / Pearson

REFERENCE BOOKS:

- Machine Drawing / Ajeet Singh / Mc Graw Hill
- Machine Drawing / N.D. Bhat / Charotar

ME308PC: MATERIAL SCIENCE & MECHANICS OF SOLIDS LAB

	e Code	Category	Ho	ours/We	ek	Credits	Max	imum N	Iarks
MEG	NODC	C	L	Т	P	С	CIA	SEE	Total
ME30	18PC	Core	-	-	2	1	30	70	100
Contact Cl		Tutorial Classes: Nil	il Practical Classes: 30 rseistomakethestudentslearntheconce nich convert raw materials into usefu		es: 30	Tota	al Classe	es: 30	
Prerequisite:									
Course Objec									
	ole in all man	ufacturing processes which	convert ra	aw mate	erials in	to useful pr	oducts ad	dapted to	o huma
needs.									
MECHA	NICS OF SO	LIDS: The objective is to lea	arn the fu	ndamen	tal cond	cepts of stres	ss, strain,	and defe	ormatic
of solids	with application	ons to bars, beams, and colu	ımns. Det	ailed stu	udy of	engineering	propertie	s of ma	terials
									corrain
also of in	nterest. Funda	mentals of applying equilib	rium, cor	npatibil	ity, and	l force- def	ormation		
		mentals of applying equilib emphasized. The students ar		•	•			relation	ships t
structural	elements are	emphasized. The students ar	e introdu	ced to a	dvance	d concepts of	of flexibil	relation	iships t stiffnes
structural	elements are		e introdu	ced to a	dvance	d concepts of	of flexibil	relation	ships t stiffnes
structural method of	elements are f structural ana	emphasized. The students ar	e introdu	ced to a	dvance	d concepts of	of flexibil	relation	ships stiffnes
structural method of List of Exper	elements are f structural ana iments: MAT	emphasized. The students ar llysis. The course builds on th	e introduc ne fundam	ced to a nental co	dvance oncepts	d concepts of engineeri	of flexibil ng mecha	relation lity and a nics cou	ships t stiffnes urse.
structural method of List of Experi 1. P	elements are f structural ana iments: MAT reparation and	emphasized. The students ar lysis. The course builds on the course build	e introduc ne fundam	ced to a nental co	dvance oncepts	d concepts of engineeri	of flexibil ng mecha	relation lity and a nics cou	ships stiffnes ırse.
structural method of List of Exper 1. P.	elements are f structural ana iments: MAT reparation and exagonal close	emphasized. The students ar alysis. The course builds on the ERIAL SCIENCE study of crystal models for s	e introduc ne fundam imple cub	ced to a nental co	dvance oncepts y centre	d concepts of of engineeri d cubic, face	of flexibil ng mecha	relation lity and a nics cou	ships t stiffnes trse.
structural method of List of Exper 1. P. ho 2. P.	elements are f structural and iments: MAT reparation and exagonal close reparation and	emphasized. The students ar alysis. The course builds on the ERIAL SCIENCE study of crystal models for s packed structures.	e introduc ne fundam imple cub of pure me	ced to a nental co bic, body etals like	dvance oncepts y centre e Iron, (d concepts of of engineeri d cubic, faco Cu and Al.	of flexibil ng mecha e centred	relation lity and a nics cou cubic an	ships t stiffnes urse.
structural method of List of Exper 1. P. hd 2. P. 3. P.	elements are f structural and iments: MAT reparation and exagonal close reparation and reparation and	emphasized. The students ar alysis. The course builds on the ERIAL SCIENCE study of crystal models for s packed structures. study of the Microstructure of	e introduc ne fundam imple cub of pure me	ced to a nental co bic, body etals like	dvance oncepts y centre e Iron, (d concepts of of engineeri d cubic, faco Cu and Al.	of flexibil ng mecha e centred	relation lity and a nics cou cubic an	ships stiffnes ırse.

6. Hardenability of steels by Jominy End Quench Test.

List of Experiments: MECHANICS OF SOLIDS

1. Direct tension test

B.Tech. II Year I Semester

- 2. Bending test on Simple supported beam
- 3. Bending test on Cantilever beam
- 4. Torsion test
- 5. Brinell hardness test/ Rockwell hardness test
- 6. Tension springs
- 7. Izod Impact test/ Charpy Impact test

B.T	ech. II Year I Semester	•							
	Course Code	Category	Но	urs/We	ek	Credits	Max	imum M	Iarks
	MC310ME	Core	L	Т	P	С	CIA	Total	
	MCJUNE	Core	-	-	2	1	30	70	100
C	ontact Classes: Nil	Tutorial Classes: Nil	P	ractical	Classes	s: 30	Tota	l Classe	s: 30
Prei	requisite: Nil								
Cou	rse Objectives:								
1.	Develop skills to gene	rate mechanical engineering d	lrawings u	ising AU	JTOCA	D tools			
2.	Learn various tools an	d functions in AUTOCAD							
Cou	rse Outcomes:								
1.	Develop 2D and 3D me	odels using modeling softwar	e.						
2.	Draw engineering draw	vings with different views, and	d an assen	nbly of	the obje	cts that mak	e up engi	ineering	
	systems, using a CAD	system.							
3.	Describe the principles	of Computer Aided Designir	ng systems	s and the	e concep	ots of Geom	etric mod	leling, so	lid
	modeling, and feature-	based design modeling.							

MC310ME: AutoCAD

List of Exercises:

- 1. CAD: Introduction to Computer Aided Drafting, Advantages and Disadvantages of CAD. AUTOCAD: Introduction and Features of AUTOCAD Software.
- 2. Environment of AutoCAD: Workspace, Application Menu, Quick Access Toolbar, Ribbon, Search for information, Pull-down menu, Status bar, Function keys. Coordinate systems: Used in AutoCAD - absolute and relative, Cartesian and polar coordinate systems.

Basic Managing/ Display control Tools: New, Save, Qnew, Open, Close, Quit/Exit, Undo, Redo, Limits, Units, Zoom, Pan, Steering Wheel, View Cube etc. Basic Drafting Tools: Line, Polylines, Point, Circle, Arc, Spline, Ellipse, Rectangle, Polygons, Text, Hatch.

Editing/ Inquiry Tools: Erase, oops, Move, Copy, Mirror, Rotate, Scale, Fillet, Chamfer, Trim, Extend, Break, Join, Stretch, Offset, Array, Distance, Radius, Angle, Area, Volume. Dimensioning Tools: Linear, Aligned, Radius, Diameter, Centre, Angular, Baseline, Continuous, Ordinate, Arc Length, Jogged Radius Dimension, Dimension Space, Dimension Break, Inspection Dimension, Multileader and its Style.

- 3. Coordinate systems (absolute, relative, polar, etc.)
- 4. Study of script, DXE & IGES Files.
- 5. Practice of 2D sketches.
- 6. Generation of various 3D Model through Extrude, Revolve, Blend and sweep.
- 7. Feature based and Boolean based modeling.
- 8. Design of simple components & Assembly.
- 9. Automatic conversion of 3D to 2D.
- 10. Project

REFERENCE BOOKS:

- 1. AutoCAD Workbook (Mechanical) by C.S.Changeriya (Author)
- 2. Engineering Graphics with AutoCAD, Revised Edition Kindle Edition by Anand P. Rastogi (Author)

ME402PC: KINEMATICS OF MACHINERY

Course Co	ode	Category	Ho	urs/V	Veek	Credits	Max	Marks	
ME402PC	• •	Core	L	Т	Р	С	CIA	SEE	Total
WIE4021 (/		3	1	0	4	30	70	100
Contact C	lasses: 45	Tutorial Classes: 15	Pra	actica	l Clas	ses: 0	Total	Classe	es: 60
Prerequis	ite: Basic p	orinciples of Mechanics							
Course O	bjectives:								
1.	To und	derstand the study of Kine	ematics	conc	erned	with relation	ship bet	ween g	geometr
an	d motion of	f the parts of a machine and	d to un	dersta	and the	basic types of	of mecha	anisms	and the
in	versions.								
2 T									
2. To	impart skil	lls to analyze the position, v	velocity	/ and	accele	ration of varie	ous mecl	nanisms	5.
3. To	develop ar	nalytical competency in sol	ving ki	nema	tic pro	blems of med	chanisms	using	differei
me	ethods.								
	_		_						
4. To	understand	and design cam mechanisi	ms for	speci	fied ou	tput motions.			
5. To	understand	l the basic concepts of tooth	ned gea	ring	and kir	nematics of ge	ear trains	5	
		pon successful completion						mnla	
	•	anisms in real life applicati	ons and	u peri	опп к.		ysis of s	imple	
me	echanisms.								
2. Aı	nalyze veloc	city and acceleration of med	chanisn	ns by	vector	and graphica	al metho	ds.	
2 5-		an an an a ban i an a fan dha air		4:			-1		- h :1
•	•	anar mechanisms for the giv	ven mo	uon p	barame	aters using and	arytical a	ind graf	Jincai
me	ethods.								
4. De	esign cams a	and followers for specified	motion	prof	iles.				
5 E-				1					1
	-	gear tooth geometry of diffe	erent ge	ar un	lves to	r motion/pow	er transi	mssion	and
an	alyses the d	lifferent gear trains.							
UNIT-I									
	ms: Eleme	nts or Links – Classificat	ion – 1	Rigid	Link,	flexible and	l fluid l	ink – 7	Гуреs (
	-	ding, turning, rolling, screw		-	-		-	-	
and open	pairs – c	constrained motion - con	npletel	y, pa	rtially	, or success	fully an	d inco	mplete

constrained.

Mechanisms: Elements or Links – Classification – Rigid Link, flexible and fluid link – Types of kinematics pairs – sliding, turning, rolling, screw and spherical pairs – lower and higher pairs – closed and open pairs – constrained motion – completely, partially, or successfully and incompletely constrained.

Mechanism and Machines – Mobility of Mechanisms: Grubler's criterion, classification of machines – kinematics chain – inversions of mechanism – inversions of quadric cycle chain, single and double slider crank chains, Mechanical Advantage.

UNIT-II

Kinematics: Velocity and acceleration – Motion of link in machine – Determination of Velocity and acceleration – Graphical method – Application of relative velocity method.

Plane motion of body: Instantaneous center of rotation – centrodes and axodes–Three centers inline theorem – Graphical determination of instantaneous center, determination of angular velocity of points and links by instantaneous center method.

Kliens construction - Coriolis acceleration - determination of Coriolis component of acceleration **Analysis Synthesis of Mechanisms:** Analysis of slider crank chain for displacement- velocity and acceleration of slider – Acceleration diagram for a given mechanism

UNIT-III

Straight-line motion mechanisms: Exact and approximate copied and generated types – Peaucellier - Hart - Scott Russel – Grasshopper – Watt -Tchebicheff's and Robert Mechanism - Pantographs

Steering gears: Conditions for correct steering – Davis Steering gear, Ackerman's steering gear.

Hooke's Joint: Single and double Hooke's joint -velocity ratio - application - problems

UNIT-IV

Cams: Definitions of cam and followers – their uses – Types of followers and cams – Terminology – Types of follower motion - Uniform velocity, Simple harmonic motion and uniform acceleration and retardation. Maximum velocity and maximum acceleration during outward and return strokes in the above 3 cases.

Analysis of motion of followers: Tangent cam with Roller follower – circular arc cam with straight, concave and convex flanks.

UNIT-V

Higher pair: Friction wheels and toothed gears – types – law of gearing, condition for constant velocity ratio for transmission of motion – velocity of sliding.

Forms of teeth, cycloidal and involutes profiles – phenomena of interferences – Methods of interference. Condition for minimum number of teeth to avoid interference – expressions for arc of contact and path of contact of Pinion & Gear and Pinion & Rack Arrangements – Introduction to Helical – Bevel and worm gearing

Gear Trains: Introduction – Types – Simple – compound and reverted gear trains – Epicyclic gear train. Methods of finding train value or velocity ratio of Epicyclic gear trains. Selection of gear box – Differential gear for an automobile

Text Books :

- 1. Theory of Machines and Mechanisms/JOSEPH E. SHIGLEY/Oxford
- 2. Theory of Machines / S. S. Rattan / Mc Graw Hill Publishers Education McGraw-Hill Education, Reprint 2012

Reference Books:

- 1. Theory of Machines / Sadhu Singh / Pearson.
- 2. Theory of Machines / Thomas Bevan/CBS.

ME403PC: THERMAL ENGINEERING-I

Course Code	Category	Но	urs/V	Veek		Credits	N	/lax Ma	rks
	C.	L	Т	P		С	CIA	SEE	Tota
ME403PC	Core	3	1	0		4	30	70	100
Contact Classes: 45	Tutorial Classes: 15		Prac	tical	Class	es: 0	Tot	al Class	ses: 60
Prerequisite: Thermo	dynamics						1		
Course Objectives:									
To apply the la	ws of Thermodynamics to an	alyze	air sta	undar	d cyc	les and to	understa	ind and	evaluate
the perform and	alysis of the major componen	its and	syste	ms o	of IC e	ngines, re	efrigerati	on	
cycles and thei	r applications.								
Course Outcomes:									
At the end of the	ne course, the student should	be abl	e to e	valua	ate the	performa	ance of I	C engin	es and
	ne course, the student should nder the given operating cond								
compressors un		litions	. App	ly the	e laws	of Thern	nodynam	ics to ev	valuate
compressors un the performanc	nder the given operating cond	litions nditio1	. Appl ning c	ly the ycles	e laws s. Und	of Thern erstand th	nodynam	ics to ev	valuate
compressors un the performanc	nder the given operating cond the of Refrigeration and air-con- tents of the IC Engines and eff	litions nditio1	. Appl ning c	ly the ycles	e laws s. Und	of Thern erstand th	nodynam	ics to ev	valuate
compressors un the performanc major compone their performan	nder the given operating cond the of Refrigeration and air-con- tents of the IC Engines and eff	litions nditio1	. Appl ning c	ly the ycles	e laws s. Und	of Thern erstand th	nodynam	ics to ev	valuate
compressors un the performanc major compone their performan	nder the given operating cond e of Refrigeration and air-con- ents of the IC Engines and efficience.	litions ndition fects o	Appling c f oper	ly the ycles rating	e laws s. Und g cond	of Thern erstand th itions on	nodynam ne functio	ics to evonality of	valuate of the
compressors un the performanc major component their performan UNIT-I I.C. Engines: Classific	nder the given operating cond e of Refrigeration and air-con- ents of the IC Engines and effi- nce.	litions ndition fects o f Four	Appling c c f oper	ly the ycles rating wo str	e laws s. Und g cond	of Thern erstand th itions on ngine, SI	hodynam ne functio & CI en	ics to evonality of gines, V	valuate of the
compressors un the performanc major compone their performan UNIT-I I.C. Engines: Classific Port Timing Diagrams	nder the given operating cond e of Refrigeration and air-con- ents of the IC Engines and effi- nce. eation - Working principles of , Air – Standard, air-fuel an	litions ndition fects o f Four d actu	App ning c f oper & Tv al cyc	ly the ycles rating wo stracted by the strain of the strai	e laws s. Und g cond roke e - Engi	of Thern erstand th itions on ngine, SI ne syster	hodynam he functio & CI en ns – Car	ics to evonality of gines, V	valuate of the
compressors un the performanc major component their performanc UNIT-I I.C. Engines: Classific Port Timing Diagrams Injection Systems for S	nder the given operating cond e of Refrigeration and air-con- ents of the IC Engines and effi- nce. cation - Working principles o , Air – Standard, air-fuel an El engines, Fuel injection syst	litions ndition fects o f Four d actu ems fo	Appling c f oper & Ty al cyc or CI o	ly the ycles cating wo str cles - engin	e laws s. Und g cond roke e - Engi	of Thern erstand th itions on ngine, SI ne syster	hodynam he functio & CI en ns – Car	ics to evonality of gines, V	valuate of the
compressors un the performanc major component their performanc UNIT-I I.C. Engines: Classific Port Timing Diagrams Injection Systems for S	nder the given operating cond e of Refrigeration and air-con- ents of the IC Engines and effi- nce. eation - Working principles of , Air – Standard, air-fuel an	litions ndition fects o f Four d actu ems fo	Appling c f oper & Ty al cyc or CI o	ly the ycles cating wo str cles - engin	e laws s. Und g cond roke e - Engi	of Thern erstand th itions on ngine, SI ne syster	hodynam he functio & CI en ns – Car	ics to evonality of gines, V	valuate of the
compressors un the performanc major component their performanc UNIT-I I.C. Engines: Classific Port Timing Diagrams Injection Systems for S	nder the given operating cond e of Refrigeration and air-con- ents of the IC Engines and effi- nce. cation - Working principles o , Air – Standard, air-fuel an El engines, Fuel injection syst	litions ndition fects o f Four d actu ems fo	Appling c f oper & Ty al cyc or CI o	ly the ycles cating wo str cles - engin	e laws s. Und g cond roke e - Engi	of Thern erstand th itions on ngine, SI ne syster	hodynam he functio & CI en ns – Car	ics to evonality of gines, V	valuate of the
compressors un the performanc major component their performanc UNIT-I I.C. Engines: Classific Port Timing Diagrams Injection Systems for S Lubrication system, Fu UNIT-II	nder the given operating cond e of Refrigeration and air-con- ents of the IC Engines and effi- nce. cation - Working principles o , Air – Standard, air-fuel an El engines, Fuel injection syst	litions ndition fects o f Four d actu ems fo n Stoic	App: ning c f oper & Tw al cyc or CI o hiomo	ly the ycles rating wo str cles - engin etry	e laws s. Und g cond roke e - Engi nes, Ig	of Thern erstand th itions on ngine, SI ne syster nition, Co	& CI en soling an	ics to evonality of gines, V buretor d	valuate of the Valve an and Fue
compressors un the performance major component their performance UNIT-I I.C. Engines: Classific Port Timing Diagrams Injection Systems for S Lubrication system, Fu UNIT-II Normal Combustion a	nder the given operating cond e of Refrigeration and air-con- ents of the IC Engines and effi- nce. eation - Working principles o , Air – Standard, air-fuel an El engines, Fuel injection syst el properties and Combustior	litions ndition fects o f Four d actu ems fo n Stoic SI en	App: hing c f oper & Tv al cyc biomo gines	ly the ycles rating wo str cles - engin etry – In	e laws s. Und g cond roke e - Engi nes, Ig	of Thern erstand th itions on ngine, SI ne system nition, Co	& CI en s – Car ooling an	ics to evonality of gines, V buretor d ed and	valuate of the Valve an and Fue effect of
compressors un the performanc major component their performanc UNIT-I I.C. Engines: Classific Port Timing Diagrams Injection Systems for S Lubrication system, Fu UNIT-II Normal Combustion a engine variables – Abr	nder the given operating cond the of Refrigeration and air-con- ents of the IC Engines and effi- nce. the cation - Working principles of , Air – Standard, air-fuel and I engines, Fuel injection syst el properties and Combustion nd abnormal combustion in	litions ndition fects o f Four d actu ems fo n Stoic SI en ion an	Appl ning c f oper & Tv al cycor CI c hiomo gines d kno	ly the ycles rating wo str cles - engin etry - In cking	e laws s. Und g cond roke e - Engi nes, Ig mporta g in S	of Thern erstand th itions on ngine, SI ne syster nition, Co nce of fl I Engines	& CI en s – Car ooling an ame spe	ics to evonality of gines, V buretor d ed and	valuate of the Valve an and Fue effect of
compressors un the performanc major component their performanc UNIT-I I.C. Engines: Classific Port Timing Diagrams Injection Systems for S Lubrication system, Fu UNIT-II Normal Combustion a engine variables – Abr fuel rating, anti-knock	nder the given operating cond the of Refrigeration and air-con- ents of the IC Engines and effi- nce. eation - Working principles of , Air – Standard, air-fuel and I engines, Fuel injection syst el properties and Combustion and abnormal combustion in normal combustion, pre-ignit	litions ndition fects o f Four d actu ems fo n Stoic SI en ion an ber – 1	App: ning c f oper & Tv al cyc or CI c hiomo gines d kno requir	ly the ycles rating wo str cles - engin etry — In cking emer	e laws s. Und g cond roke e - Engi nes, Ig mporta g in S nts, ty	of Thern erstand th itions on ngine, SI ne syster nition, Co unce of fl I Engines pes of SI	& CI en as – Car ooling an ame spe a – Fuel r engines.	gines, V buretor d ed and requiren	valuate of the Valve an and Fue effect on nents an
compressors un the performance major component their performance UNIT-I I.C. Engines: Classific Port Timing Diagrams Injection Systems for S Lubrication system, Fu UNIT-II Normal Combustion a engine variables – Abr fuel rating, anti-knock a Four stages of combust	nder the given operating cond the of Refrigeration and air-con- ents of the IC Engines and effi- nce. cation - Working principles of , Air – Standard, air-fuel an I engines, Fuel injection syst el properties and Combustion additives – combustion, pre-igniti additives – combustion cham- tion in CI engines – Delay per	litions ndition fects o f Four d actu ems fo a Stoic SI en ion an ber – 1 riod ar	App: ning c f oper & Tv al cyc or CI c hiomo gines d kno requir nd its	ly the ycles rating wo strictes - engin etry – In cking emer impo	e laws s. Und g cond roke e - Engi nes, Ig mporta g in S nts, tyj	of Thern erstand th itions on ngine, SI ne system nition, Co nce of fi I Engines pes of SI e – Effect	& CI en as – Car ooling an ame spe a – Fuel n engines. of engin	ics to evonality of and the second se	valuate of the Valve an and Fue effect on nents an les
compressors un the performanc major component their performanc UNIT-I I.C. Engines: Classific Port Timing Diagrams Injection Systems for S Lubrication system, Fu UNIT-II Normal Combustion a engine variables – Abr fuel rating, anti-knock a Four stages of combust Diesel Knock– Need for	nder the given operating cond the of Refrigeration and air-con- ents of the IC Engines and effi- nce. cation - Working principles o , Air – Standard, air-fuel an El engines, Fuel injection syst el properties and Combustion nd abnormal combustion in normal combustion, pre-igniti additives – combustion cham	litions ndition fects o f Four d actu ems fo a Stoic SI en ion an ber – 1 riod ai mpres	Appl ning c f oper & Tv al cyco or CI c hiomo gines d kno requir nd its sion a	ly the ycles rating wo str cles - engin etry — In cking emer impo and c	e laws s. Und g cond roke e - Engi nes, Ig mporta g in S nts, tyj ortance	of Thern erstand th itions on ngine, SI ne syster nition, Co nce of fl I Engines pes of SI e – Effect stion indu	& CI en as – Car ooling an ame spe a – Fuel n engines. of engin	ics to evonality of and the second se	valuate of the Valve an and Fue effect on nents an les

UNIT-III

Testing and Performance: Parameters of performance - measurement of cylinder pressure, fuel consumption, air intake, exhaust gas composition, Brake power–Determination of frictional losses and indicated power – Performance test – Heat balance sheet and chart

Classification of compressors – Fans, blowers and compressors – positive displacement and dynamic types – reciprocating and rotary types.

Reciprocating Compressors: Principle of operation, work required, Isothermal efficiency volumetric efficiency and effect of clearance volume, staged compression, undercooling, saving of work, minimum work condition for staged compression.

UNIT-IV

Rotary Compressor (**Positive displacement type**): Roots Blower, vane sealed compressor, Lysholm compressor – mechanical details and principle of working – efficiency considerations.

Dynamic Compressors: Centrifugal compressors: Mechanical details and principle of operation – velocity and pressure variation. Energy transfer-impeller blade shape-losses, slip factor, power input factor, pressure coefficient and adiabatic coefficient – velocity diagrams – power.

Axial Flow Compressors: Mechanical details and principle of operation–velocity triangles and energy transfer per stage degree of reaction, work done factor – isentropic efficiency – pressure rise calculations Polytropic efficiency.

UNIT-V

Gas Turbines: Simple Gas Turbine Plant – Ideal Cycle – Closed Cycle and Open Cycle for Gas Turbines, Constant Pressure Cycle, Constant Volume Cycle, Efficiency – Work Ratio and Optimum Pressure Ration for Simple Gas Turbine Cycle. Parameters of Performance, Actual Cycle, Regeneration,

Inter cooling and Reheating – Closed and Semi-Closed Cycle

Text Books :

- 1. I.C. Engines / V. Ganesan / Mc GrawHill
- 2. Thermal Engineering / Mahesh M Rathore / Mc GrawHill

Reference Books:

- 1. Applied Thermodynamics for Engineering Technologists / Eastop /Pearson
- 2. Fundamentals of Classical Thermodynamics / Vanwylen G.J., Sonntag R.E. / WileyEastern
- 3. Internal Combustion Engines Fundamentals John B. Heywood McGraw HillEd

ME404PC: FLUID MECHANICS AND HYDRAULIC MACHINES

Course Code	Category	Ho	urs/W	Veek	Credits	N	Iax Mai	rks
ME404PC	Core	L	Т	Р	С	CIA	SEE	Tot al
		3	1	0	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	-	Practi	ical Cla	sses: 0	Tota	al Class	es: 60
Prerequisite: None								
Course Objectives:								
The objectives of the	e course are to enable the stud	ent.						
• To understa	nd the basic principles of fluic	l mecha	nics					
	various types of flows							
•	nd boundary layer concepts ar	nd flow	throug	gh pipes	ł			
• To evaluate	the performance of hydraulic	turbine	s					
• To understa	nd the functioning and charac	teristic	curves	s of pum	ips			
<u> </u>								
Course Outcomes:	1 ' 1 CC / C C1 ' 1 /		CI					
-	lain the effect of fluid properti			-	••			
	ntify type of fluid flow pattern					T1 · 1 X	.	
• To analyze a principles in	a variety of practical fluid flow	v and m	leasuri	ing devi	ces and utilize	e Fluid N	lechanic	cs
• •	d analyze an appropriate turbi	ne with	refere	ence to g	viven situation	in now	ernlants	
	performance parameters of a			-		-	-	
	ionstrate boundary layer conce	-	onum	agui une	. receipi oculii	s pamp.		
		- F						
UNIT-I								
	ns and units: physical properties		-	-			surface t	ensior
	eir influence on fluid motion-	-			-	essures		
- measurement of pressu	re- Piezometer, U-tube and di	merenti	ai mai	nometer	S			
UNIT-II								
	mline, path line and streak l							•
	n-uniform, laminar & turbule and three-dimensional flows		tional	& irrot	ational flows	-equation	n or con	tinuit
	e and body forces –Euler's and		ulli's	equation	ns for flow alo	ong a stre	eam	
line, momentum equation	, , , , , , , , , , , , , , , , , , ,			1		0	-	

UNIT-III

Boundary Layer Concepts: Definition, thicknesses, characteristics along thin plate, laminar and turbulent boundary layers (No derivation) boundary layer in transition, separation of boundary layer, submerged objects – drag and lift.

Closed conduit flow: Reynold's experiment- Darcy Weisbach equation- Minor losses in pipes- pipes in series and pipes in parallel – total energy line – hydraulic gradient line. Measurement of flow: Pitot tube, venturi meter, and orifice meter, Flow nozzle

UNIT-IV

Basics of turbo machinery: Hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.

Hydraulic Turbines: Classification of turbines, Heads and efficiencies, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine – working proportions, work done, efficiencies, hydraulic design – draft tube theory- functions and efficiency.

Performance of hydraulic turbines: Geometric similarity, Unit and specific quantities, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer

UNIT-V

Centrifugal pumps: Classification, working, work done – barometric head- losses and efficiencies specific speed- performance characteristic curves, NPSH.

Reciprocating pumps: Working, Discharge, slip, indicator diagrams.

Text Books :

- 1. Hydraulics, Fluid mechanics and Hydraulic Machinery MODI and SETH.
- 2. Fluid Mechanics and Hydraulic Machines by Rajput

Reference Books:

- 1. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, Kotaria & Sons.
- 2. Fluid Mechanics and Machinery by D. Rama Durgaiah, New Age International.
- 3. Hydraulic Machines by Banga & Sharma, Khanna Publishers
- 4. Fluid Mechanics Including Hydraulic Machines by A.K.Jain, Khanna Publishers, New Delhi, 8th Edition, 2003

ME406PC: FLUID MECHANICS AND HYDRAULIC MACHINES LAB

Course Code	Category	Ho	ours/We	ek	Credits	Max	imum N	larks
ME406PC	Core	L	Т	P 2	C	CIA	SEE	Tota
Contact Classes: Nil	Tutorial Classes: Nil	- Pra	- ctical C	_	<u> </u>	30 Total	70 Classes:	100
Prerequisite: FMHM	Tutorial Classes. Ivi	114		145565	50	Iotai	Classes.	50
Course Objectives:								
• To understand	the basic principles of fluid m	echanics.						
• To identify var	ious types of flows.							
• To understand	boundary layer concepts and f	low throu	igh pipe	s.				
• To evaluate the	performance of hydraulic tur	bines.						
• To understand	the functioning and characteri	stic curve	s of pun	nps				
Course Outcomes:	6		I	I				
• Able to explain	the effect of fluid properties of	on a flow	system.					
Able to identify	type of fluid flow patterns an	d describ	e contin	uity equ	ation.			
• To analyze a va	riety of practical fluid flow ar	nd measur	ing devi	ces and	utilize fluid	mechan	ics princ	iples in
design.								
	nalyze an appropriate turbine			-		·	its.	
-	formance parameters of a give		ugal and	l Recipr	ocating pun	np.		
Able to demon	strate boundary layer concepts	8						
List of Experiments:								
1. Impact of jets of								
	est on Pelton Wheel.							
3. Performance Te	est on Francis Turbine.							
4. Performance Te	est on Kaplan Turbine.							
5. Performance Te	est on Single Stage Centrifuga	l Pump.						
6. Performance Te	est on Multi Stage Centrifugal	Pump.						
7. Performance Te	est on Reciprocating Pump.							
8. Calibration of V	enturi meter.							
9. Calibration of C	Drifice meter.							
10. Determination of	of friction factor for a given pi	peline.						
11. Determination of	of loss of head due to sudden c	ontractior	n in a pip	beline.				
12. Verification of								

ME407PC: THERMAL ENGINEERING LAB

Course Code	Category	Ho	ours/We	ek	Credits	Max	imum M	larks
ME 407DC	Com	L	Т	Р	С	CIA	SEE	Tota
ME407PC	Core	-	-	2	1	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil		ctical C	lasses: 3	30	Total	Classes:	30
Prerequisite: Thermodyn	namics & Thermal Engineeri	ng – I						
Course Objectives:								
• To understand the	working principles of IC Engin	nes, Comp	pressors.					
Course Outcomes:		-						
List of Experiments:								
1. I.C. Engines Valve	e / Port Timing Diagrams							
2. I.C. Engines Perfo	rmance Test for 4 Stroke SI en	gines						
3. I.C. Engines Perfo	rmance Test for 2 Stroke SI en	gines						
4. I.C. Engines Mors	e, Retardation, Motoring Tests							
5. I.C. Engine Heat H	Balance – CI/SI Engines							
6. I.C. Engines Econ	omical speed Test on a SI engi	ne						
7. I.C. Engines effect	t of A/F Ratio in a SI engine							
8. Performance Test	on Variable Compression Ratio	o Engine						
	ance Test on a 4S CI Engine a	-	speed					
•	ncy of Air – Compressor Unit							
11. Dis-assembly / As								
•								
12. Study of Boilers								

MC410ME: CREO

	Category	Ho	urs/We	ek	Credits	Max	imum M	larks
MC410ME	МС	L	Т	P	C	CIA	SEE	Tota
Contact Classes: Nil	Tutorial Classes: Nil	- Dra	- ctical	2 Classe	 	30 Total	70 Classe	100
Prerequisite: NIL	i utoriai classes. Mi	114	cticai	014550		Tota	014550	.3. 00
Course Objectives:								
• Develop skills to ge	enerate mechanical engineering	drawing	s using	CREO t	ools.			
• To help Engineers	in developing a product design	virtually.						
COURSE OUTCOMES		•						
• Utilize the interface	e, Sketcher, Modeling enhancen	nents in (CREO F	Parametr	ic.			
List of Exercises:								
1. Introduction to	CREO parametric							
	*							
2. 2D sketch mod	C							
3. 2D sketch Edit	tools							
4. 3D modeling								
5. 3D modeling A	dvanced Features							
6. Pattern Feature	:							
 7. 3D practice mo 	odels							
7. 3D practice mo	ng							
 3D practice mo Surface modeli Assembly mode 	ng eling							
 3D practice mo Surface modeli 	ng eling							

ME501PC: DYNAMICS OF MACHINERY

Course Code	Category	Ног	irs/Wee	k	Credits	Max	imum I	Marks
ME501PC	Core	L	Т	Р	С	CIA	SEE	Tota
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pra	actical (lasse	s: Nil	Tota	al Class	es: 60
rerequisite: Kinematics of	Machinery							
ourse Objectives:								
1. To impart the knowle	edge of principles, operations	and to an	alyze the	differ	ent types of	governo	ors for co	ontrolli
speed changes caused	by changes in the load.							
2. To study and understa	and the principles of gyroscop	e and its a	applicatio	ons.				
3. To understand the me	thod of static force analysis a	nd dvnam	ic force a	nalvsi	s in mechani	isms wh	ile transr	nitting
motion and power.	,			J				
motion and power.								
4. To study the unbalance	ced forces and analyze the for	ces acting	in differe	ent par	ts of recipro	cating a	nd rotati	ng par
-	ced forces and analyze the for	ces acting	in differe	ent par	ts of recipro	cating a	nd rotati	ng par
4. To study the unbalance of an engine.	ced forces and analyze the for	ces acting	in differe	ent par	ts of recipro	cating a	nd rotati	ng par
of an engine.	ced forces and analyze the for anal frequencies of undamped,	-		-	-	-	nd rotati	ng par
of an engine. 5. To determine the natu		-		-	-	-	nd rotati	ng par
of an engine. 5. To determine the natu course Outcomes:	ral frequencies of undamped,	-		-	-	-	nd rotati	ng part
of an engine. 5. To determine the natu course Outcomes: pon Completion of this cour	ral frequencies of undamped,	damped a	and forced	d vibra	-	-	nd rotati	ng par
of an engine. 5. To determine the nature ourse Outcomes: pon Completion of this cour 1. Analyze and design va	ral frequencies of undamped, rse, students will be able to: arious types of governors and	damped a	and forced	d vibra	ating systems	-	nd rotati	ng part
of an engine. 5. To determine the natu Sourse Outcomes: pon Completion of this cour 1. Analyze and design va	ral frequencies of undamped, rse, students will be able to:	damped a	and forced	d vibra	ating systems	-	nd rotati	ng part
of an engine. 5. To determine the natu course Outcomes: pon Completion of this cour 1. Analyze and design va 2. Apply the gyroscopic	ral frequencies of undamped, rse, students will be able to: arious types of governors and	damped a their app four whee	and forced lications.	d vibra	ating systems	5.	nd rotati:	ng part
of an engine. 5. To determine the nature Course Outcomes: To pon Completion of this courted 1. Analyze and design variable 2. Apply the gyroscopic 3. Understand various mathematical structures of the structure of the st	ral frequencies of undamped, rse, students will be able to: arious types of governors and principle on aeroplane, ship, nethods of static and dynamic	damped a their appl four whee analysis c	and forced lications. el and two of planar a	d vibra	ating systems el vehicles. atial mechan	s. iisms.		
of an engine. 5. To determine the nature Fourse Outcomes: pon Completion of this court 1. Analyze and design vancular 2. Apply the gyroscopic 3. Understand various mathematical design vancular 4. Understand the causes	real frequencies of undamped, rese, students will be able to: arious types of governors and principle on aeroplane, ship, nethods of static and dynamic s of rotating and reciprocating	damped a their appl four whee analysis c	and forced lications. el and two of planar a	d vibra	ating systems el vehicles. atial mechan	s. iisms.		
of an engine. 5. To determine the nature Course Outcomes: To pon Completion of this courted 1. Analyze and design variable 2. Apply the gyroscopic 3. Understand various mathematical structures of the structure of the st	real frequencies of undamped, rese, students will be able to: arious types of governors and principle on aeroplane, ship, nethods of static and dynamic s of rotating and reciprocating	damped a their appl four whee analysis c	and forced lications. el and two of planar a	d vibra	ating systems el vehicles. atial mechan	s. iisms.		
of an engine. 5. To determine the nature Course Outcomes: Typon Completion of this courted 1. Analyze and design variations 2. Apply the gyroscopic 3. Understand various masses, in-line, radial	rse, students will be able to: arious types of governors and principle on aeroplane, ship, hethods of static and dynamic s of rotating and reciprocating and v-engines.	damped a their appl four whee analysis o g unbalanc	and forced lications. el and two of planar a ce and bal	d vibra o-whee and spa lancing	ating systems el vehicles. atial mechan g techniques	s. isms. for rota	ting/reci	procati
of an engine. 5. To determine the nature Course Outcomes: Typon Completion of this courte 1. Analyze and design vance 2. Apply the gyroscopic 3. Understand various masses, in-line, radial 5. Perform detailed analysis	real frequencies of undamped, rese, students will be able to: arious types of governors and principle on aeroplane, ship, nethods of static and dynamic s of rotating and reciprocating	damped a their appl four whee analysis o g unbalanc	and forced lications. el and two of planar a ce and bal	d vibra o-whee and spa lancing n syst	ating systems el vehicles. atial mechan g techniques	s. isms. for rota	ting/reci	procati

Precession: Gyroscopes – effect of precession – motion on the stability of moving vehicles such as motorcycle – motorcar – aeroplanes and ships.

Static and Dynamic Force Analysis: Static force analysis of planar mechanisms – Analytical Method – Dynamic Force Analysis – D'Alembert's principle, Dynamic Analysis of 4-link mechanism, Slider Crank Mechanism.

$\mathbf{UNIT} - \mathbf{II}$

Turning Moment Diagram and Flywheels: Engine Force Analysis – Piston Effort, Crank Effort, etc., Inertia Force in Reciprocating Engine – Graphical Method - Turning moment diagram –fluctuation of energy – flywheels and their design - Inertia of connecting rod- inertia force in reciprocating engines – crank effort and torque diagrams.

UNIT – III

Friction: pivots and collars – uniform pressure, uniform wear – friction circle and friction axis: lubricated surfaces – boundary friction – film lubrication. Clutches – Types – Single plate, multi-plate, and cone clutches. **Brakes and Dynamometers:** Types of brakes: Simple block brake, band, and block brake- internal expanding shoe brake-effect of braking of a vehicle. **Dynamometers** – absorption and transmission types. General description and methods of operation.

$\mathbf{UNIT} - \mathbf{IV}$

Governors: Types of governors - Watt, Porter and Proell governors. Spring loaded governors – Hartnell and Hartung with auxiliary springs. Sensitiveness, isochronisms and hunting – stability – effort and power of the governors.

Balancing: Balancing of rotating masses- Primary, Secondary, and higher balancing of reciprocating masses. Analytical and graphical methods. Unbalanced forces and couples. Examination of "V" and multi cylinder inline and radial engines for primary and secondary balancing- locomotive balancing – Hammer blow – Swaying couple – variation of tractive effort.

$\mathbf{UNIT}-\mathbf{V}$

Vibrations: Free Vibration of mass attached to vertical spring – Transverse loads – vibrations of beams with concentrated and distributed loads. Dunkerly's method – Raleigh's method. Whirling of shafts – critical speed – torsional vibrations – one, two and three rotor systems.

Textbooks:

- 1. Theory of Machines /S.S.Rattan / Mc Graw Hill.
- 2. Theory of Machines /Sadhu Singh/ Pearson.

Reference Books:

- 1. Theory of Machines and Mechanisms/Joseph E. Shigley / Oxford.
- 2. Theory of Machines / Rao, J.S & R.V. Duggipati/ New Age.

ME502PC: DESIGN OF MACHINE MEMBERS-I

B.Tech. III Year I Semest	ter							
Course Code	Category	Hou	rs/Wee	k	Credits	Max	imum I	Marks
ME502PC	Core	L	Т	P	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil Total Classes: 60						es: 60
Prerequisite: Engineering m	echanics, mechanics of solid	s, manufac	turing p	rocesse	es, metallurg	y and m	aterial so	cience.

Course Objectives:

- **1.** To apply fundamental design practices with regard to material selection, material properties, manufacturing considerations, standards and codes.
- 2. To understand the general design procedures and principles in the design of machine elements.
- 3. To study different materials of construction and their properties and factors determining the selection of material for various applications.
- 4. To determine stresses under different loading conditions.
- 5. To learn the design procedure of different fasteners, joints, shafts and couplings.

Course Outcomes:

Upon Completion of this course, students will be able to:

- 1. The student acquires the knowledge about the principles of design, material selection, component behavior subjected to loads, and criteria of failure.
- 2. Understands the concepts of principal stresses, stress concentration in machine members and fatigue loading.
- 3. Design on the basis of strength and rigidity and analyze the stresses and strains induced in a machine element.
- 4. Design keys, cotters and knuckle joints including riveted, bolted and welded joints.
- 5. Provide alternate design solutions based on requirement.

UNIT – I

Introduction: General considerations in the design of Engineering Materials and their properties – selection – Manufacturing consideration in design. Tolerances and fits –BIS codes of steels.

Design for Static Strength: Simple stresses – Combined stresses – Torsional and Bending stresses– Impact stresses – Stress strain relation – Various theories of failure – Factor of safety – Design for strength and rigidity – preferred numbers. The concept of stiffness in tension, bending, torsion and combined situations.

UNIT - II

Design for Fatigue Strength: Stress concentration–Theoretical stress Concentration factor–Fatigue stress concentration factor- Notch Sensitivity – Design for fluctuating stresses – Endurance limit – Estimation of Endurance strength – Gerber's curve– Goodman's line– Soderberg's line.

UNIT – III

Riveted, Welded and Bolted Joints: Riveted joints- methods of failure of riveted joints-strength equations-efficiency of riveted joints-eccentrically loaded riveted joints.

Welded joints-Design of fillet welds-axial loads-circular fillet welds under bending, torsion. Welded joints under eccentric loading.

Bolted joints – Design of bolts with pre-stresses – Design of joints under eccentric loading – locking devices – bolts of uniform strength.

UNIT – IV

Keys, Cotters and Knuckle Joints: Design of keys-stresses in keys-cottered joints-spigot and socket, sleeve and cotter, Gib and cotter joints-Knuckle joints.

UNIT – V

Shafts: Design of solid and hollow shafts for strength and rigidity – Design of shafts for combined bending and axial loads – Shaft sizes – BIS code. - Gaskets and seals (stationary & rotary)

Shaft Couplings: Rigid couplings – Muff, Split muff and Flange couplings. Flexible couplings – Flange coupling (Modified).

Textbooks:

- 1. Design of Machine Elements / V. Bhandari / Mc Graw Hill.
- 2. Machine Design / Jindal / Pearson.

- 1. Design of Machine Elements / V. M. Faires / Macmillan.
- 2. Design of Machine Elements-I / Kannaiah, M.H / New Age.

ME503PC: METROLOGY & MACHINE TOOLS

Course Code	Category	Hou	irs/Wee	k	Credits	Max	imum I	Marks
ME503PC	Core	L	Τ	P	С	CIA	SEE	Tota
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pra	actical (Classe	s: Nil	Tota	al Class	es: 60
Prerequisite: None Course Objectives: The cou	ursa contant anablas students	to						
Ŭ			munica	which	ic horring	inonooii		rtonoo
*	ge of Engineering metrolog	y and its	practice	which	is naving	increasi	ng mpo	rtance
industry.							1 6	
	e student to improve applica	ations asp	ect in th	e mea	surements a	nd cont	rol of p	rocess
manufacture.	1							
*	al aspects of the metal cuttin	ng princip	les and t	heir ap	plication in	studyin	g the be	havior
various machining pro								
C	fundamental parts of various							
5. Discuss various prince	iples of jigs and fixtures whi	ch will be	e used to	hold a	nd guide the	e work p	vieces an	d cutti
tools in various mach	nine tools.							
Course Outcomes: At the e	nd of the course, the student	would be a	able to					
1. Identify techniques to	minimize the errors in measu	rement.						
2. Identify methods and	devices for measurement of l	length, ang	gle, gear	& thre	ad paramete	rs, surfa	ce rougl	nness a
geometric features of	parts.							
3. Understand working of	f lathe, shaper, planer, drillin	g, milling	and grin	ding m	achines.			
4. Comprehend speed an	d feed mechanisms of machin	ne tools.						
5. Estimate machining ti	mes for machining operations	s on machi	ine tools.					
UNIT – I								
0111-1								
Metal cutting: Introduction, e	lements of cutting process –	Geometry	v of sing	le poir	nt tools. Chi	p forma	tion and	types
hips. Engine lathe – Principle			-	-		-		• •
	E OF WOLKING, LYDES OF TAILLE, S	promo	onor rup				enter euj	
urret lathe – Single spindle a		thes – too	1 lavouts					
Surret lathe – Single spindle a		thes – too	l layouts.					
Curret lathe – Single spindle a		thes – too	l layouts.					

Boring machines and applications. Shaping, slotting and planing machines Principles of working – machining time calculations.

UNIT – III

Milling machines – Principles of working – Types of milling machines – Geometry of milling cutters methods of indexing. Grinding – theory of grinding – classification of grinding machines. Types of abrasives, bonds. Selection of a grinding wheel. Lapping, honing and broaching machines, comparison and Constructional features, machining time calculations.

UNIT-IV

Limits, fits and tolerances- Types of Fits - Unilateral and bilateral tolerance system, hole and shaft basis system. Interchangeability and selective assembly.

Limit Gauges: Taylor's principle, Design of GO and NO-GO gauges, Measurement of angles using Bevel protractor and Sine bar. Measurement of flatness using straight edges, surface plates, optical flat and auto collimator.

UNIT-V

Surface Roughness Measurement: Roughness, Waviness. CLA, RMS, Rz Values. Methods of measurement of surface finish, Talysurf. Screw thread measurement, Gear measurement; Machine Tool Alignment Tests on lathe, milling and drilling machines. Coordinate Measuring Machines: Types and Applications of CMM.

Text Books:

- 1. Machine Tool Practices/ Kibbe, Johne. Neely, T. White, Rolando O. Meyer/ Pearson.
- 2. Engineering Metrology/ R.K. Jain/ Khanna Publishers.

- 1. Principles of Machine Tools, Bhattacharyya A and Sen.G.C / New Central Book Agency.
- 2. Fundamentals of Dimensional Metrology / Connie Dotson / Thomson.
- 3. Fundamentals of Metal Machining and Machine Tools / Geoffrey Boothroyd / McGraw Hill.
- 4. Principles of Engineering Metrology/ Rega Rajendra/ Jaico Publishers.
- 5. Metrology and Measurement/ Bewoor & Kulkarni/ Tata Mc Graw Hill.

ME504PC: INSTRUMENTATION AND CONTROL SYSTEMS

Course Code	Category	H	ours/	Week	Credits	N	Aax Mar	·ks
ME504PC	Core	L	Τ	Р	С	CIA	SEE	Total
MILJUHI C	Core	3	0	0	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15		Prac	tical Cl	asses: Nil	Tot	al Classe	es: 60
Prerequisite: Mathematics-I,	Thermodynamics, Basic of	Electi	rical a	nd Elec	tronics Engi	neering		
Course Objectives:								
1. Understanding	the basic characteristic of a	typica	al inst	rument.				
2. Identifying erro	ors and their types that would	d occ	ur in a	an instru	iment.			
3. Identifying pro	perties used for evaluating the	he the	rmal	systems				
4. The concept of	transducer and Various type	es and	their	charact	ers.			
5. Analyze about	speed measurement devices	and t	heir a	pplicati	ons.			
Course Outcomes:								
1. To identify va	rious elements and their pu	rpose	in ty	pical in	nstruments, 1	to ident	ify vario	us errors t
would occur in	instruments.							
2. Analysis of erro	ors so as to determine correc	tion f	actors	s for eac	ch instrumen	t.		
3. To understand response time.	static and dynamic characte	ristics	s of in	strumei	nt and should	l be abl	e to deter	mine load
•	ge of displacement should be	e able	to si	becify t	ransducer, it	accura	te and lo	ading time
that transducer	*				,			0
		arious	instr	uments.				
5. Summarize the	calibration procedures of va							

to measure displacement – Using Piezo electric, Inductive, capacitance, resistance, ionization and Photo electric transducers; Calibration procedures.

$\mathbf{UNIT}-\mathbf{II}$

Measurement of Temperature: Various Principles of measurement-Classification: Expansion Type: Bimetallic Strip-Liquid in glass Thermometer; Electrical Resistance Type: Thermistor, Thermocouple, RTD; Radiation Pyrometry: Optical Pyrometer; Changes in Chemical Phase: Fusible Indicators and Liquid crystals. Measurement of Pressure: Different principles used- Classification: Manometers, Dead weight pressure gauge Tester (Piston gauge), Bourdon pressure gauges, Bulk modulus pressure gauges, Bellows, Diaphragm gauges. Low pressure measurement – Thermal conductivity gauges, ionization pressure gauges, McLeod pressure gauge.

UNIT – III

Measurement of Level: Direct methods – Indirect methods – Capacitive, Radioactive, Ultrasonic, Magnetic, Cryogenic Fuel level indicators –Bubbler level indicators.

Flow measurement: Rotameter, magnetic, Ultrasonic, Turbine flowmeter, Hot – wire anemometer, Laser Doppler Anemometer (LDA).

Measurement of Speed: Mechanical Tachometers, Electrical tachometers, Non- contact type Stroboscope;Measurement of Acceleration and Vibration: Different simple instruments – Principles of Seismic instruments – Vibrometer and accelerometer using this principle- Piezo electric accelerometer.

UNIT – IV

Stress-Strain measurements: Various types of stress and strain measurements –Selection and installation of metallic strain gauges; electrical strain gauge – gauge factor – method of usage of resistance strain gauge for bending, compressive and tensile strains – Temperature compensation techniques, Use of strain gauges for measuring torque, Strain gauge Rosettes.

Measurement of Humidity: Moisture content of gases, Sling Psychrometer, Absorption Psychrometer, Dew point meter. Measurement of Force, Torque and Power- Elastic force meters, load cells, Torsion meters, Dynamometers.

UNIT-V

Elements of Control Systems: Introduction, Importance – Classification – Open and closed systems- Servomechanisms – Examples with block diagrams – Temperature, speed and position control systems- Transfer functions- First and Second order mechanical systems.

Text Books:

- 1. Principles of Industrial Instrumentation & Control Systems, Alavala, Cengage Learning.
- Basic Principles Measurements (Instrumentation) & Control Systems S. Bhaskar Anuradha Publications.

- 1. Measurement Systems: Applications & design, E. O. Doebelin, TMH.
- 2. Instrumentation, Measurement & Analysis, B.C. Nakra & K.K. Choudhary, TMH.
- 3. Experimental Methods for Engineers / Holman.
- 4. Mechanical and Industrial Measurements / R. K. Jain/ Khanna Publishers.
- 5. Mechanical Measurements / Sirohi and Radhakrishna / New Age International.

ME505PC: THERMAL ENGINEERING-II

	Category	Hour	rs/We	eek Credits Max Max P C CIA SEE 0 3 30 70 ical Classes: Nil Total Class I Power Plants and Gas turbine plants and Jet propulsions, their analyses	arks			
ME505PC	Core	L	Т	Р	С	CIA	SEE	Total
WIE5051 C	Core	3	0	0	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	P	ractic	al Cla	asses: Nil	Tot	al Class	ses: 60
Prerequisite: Thermodynamics								
Course Objectives:								
1. Study and learn the pro	cesses and cycles followed	in The	ermal	Powe	er Plants and	Gas tu	irbine p	olants ar
components used in the	power plants.							
2. Gain the knowledge on s	team power plants, gas turbi	ne powe	er plar	its and	l Jet propulsio	ons, thei	r analys	ses on fu
and fluidized bed combi	ustion.							
3. To apply the laws of Th	ermodynamics to analyze s	team po	ower a	cycle a	and to perfor	m anal	ysis of	the maj
components of steam po	wer plants and their applicat	ions.						
4. To apply the laws of T	hermodynamics to analyze	gas turł	oine c	ycle a	and to perfor	m analy	sis of	the maj
components of gas turbin	ne plants and their applicatio	ns.						
5. Understanding the conce	pts of jet propulsion and	rockets	and i	ts typ	es with them	modyna	mic ana	alysis ar
performance evaluation								
Course Outcomes: At the end of	of the course, the student sho	uld be a	ble to					
1. Develop state – space di	agrams based on the schem	natic dia	grams	s of p	rocess flow o	of steam	n and g	as turbir
plants.			•	[•]			C	
2. Apply the laws of Thermo	odynamics to analyze thermo	odynami	c cycl	es.				
3. Differentiate between vap	our power cycles and gas po	wer cyc	les.					
4. Infer from property chart	s and tables and to apply the	e data fo	or the	evalua	ation of perfo	rmance	parame	ters of th
steam and gas turbine pla	nts.							
	ity of major components of s	steam an	d gas	turbin	e plants and	to do the	e analys	is of the
5. Understand the functional								
5. Understand the functional components.								
components.								

Boilers – Classification – Working principles with sketches including H.P.Boilers – Mountings and Accessories – Working principles- Boiler horse power, Equivalent Evaporation, Efficiency and Heat balance – Draught- Classification

- Height of chimney for given draught and discharge- Condition for maximum discharge- Efficiency of chimney.

UNIT-II

Steam Nozzles: Stagnation Properties- Function of nozzle – Applications and Types- Flow through nozzles-Thermodynamic analysis – Assumptions -Velocity of nozzle at exit-Ideal and actual expansion in nozzle- Velocity coefficient- Condition for maximum discharge- Critical pressure ratio- Criteria to decide nozzle shape- Super saturated flow, its effects, Degree of super saturation and Degree of under cooling - Wilson line.

UNIT-III

Steam Turbines: Classification – Impulse turbine; Mechanical details – Velocity diagram – Effect of friction – Power developed, Axial thrust, Blade or diagram efficiency – Condition for maximum efficiency. De-Laval Turbine - its features- Methods to reduce rotor speed-Velocity compounding and Pressure compounding- Velocity and Pressure variation along the flow – Combined velocity diagram for a velocity compounded impulse turbine.

Reaction Turbine: Mechanical details – Principle of operation, Thermodynamic analysis of a stage, Degree of reaction –Velocity diagram – Parson's reaction turbine – Condition for maximum efficiency.

UNIT-IV

Steam Condensers: Requirements of steam condensing plant – Classification of condensers – Working principle of different types – Vacuum efficiency and Condenser efficiency – Air leakage, sources and its affects, Air pump- Cooling water requirement.

Gas Turbines: Simple gas turbine plant – Ideal cycle, essential components – Parameters of performance – Actual cycle – Regeneration, Inter cooling and Reheating –Closed and Semi-closed cycles – Merits and Demerits- Combustion chambers and turbines of Gas Turbine Plant- Brief Concepts.

UNIT-V

Jet Propulsion: Principle of Operation –Classification of jet propulsive engines – Working Principles with schematic diagrams and representation on T-S diagram - Thrust, Thrust Power and Propulsion Efficiency – Turbo jet engines – Needs and Demands met by Turbo jet – Schematic Diagram, Thermodynamic Cycle, Performance Evaluation Thrust Augmentation – Methods.

Rockets: Application – Working Principle – Classification – Propellant Type – Thrust, Propulsive Efficiency – Specific Impulse – Solid and Liquid propellant Rocket Engines.

Text Books:

1. Thermal Engineering / Mahesh M Rathore/ Mc Graw Hill.

2. Gas Turbines – V. Ganesan /Mc Graw Hill.

- 1. Gas Turbine Theory/ Saravanamuttoo, Cohen, Rogers/ Pearson.
- 2. Fundamentals of Engineering Thermodynamics / Rathakrishnan/ PHI.
- 3. Thermal Engineering/ Rajput/ Lakshmi Publications.

ME506PC: OPERATIONS RESEARCH

B.Tech. III year I semester								
Course Code	Category	Ho	urs/W	eek	Credits	N	·ks	
	q	L	Т	Р	С	CIA	SEE	Total
ME506PC	Core	3	0	0	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil Total Cla					al Class	es: 60

Prerequisite: None

Course Objectives:

1. Understanding the mathematical importance of development of model in a particular optimization model for the issue and solving it.

- 2. Grasp the methodology of OR problem solving and formulate linear programming problem.
- 3. Develop formulation skills in transportation models and assignment problems and finding solutions, Understanding of sequencing and replacement theory.
- 4. Basic understanding of inventory and theory of games.
- 5. Understand the basics in the field of dynamic programming and waiting lines.

Course Outcomes:

- 1. Understanding the problem, identifying variables & constants, Formulation of optimization model and applying appropriate optimization technique.
- 2. Formulate a given simplified description of a suitable real-world problem as a linear programming model and use the simplex method to solve small linear programming models.
- 3. Solve & interpret transportation models' and assignment problems, solve sequencing and replacement theory.
- 4. Solve basic game theory and gain knowledge in fundamental concepts in inventory.
- 5. Formulate and solve waiting lines and dynamic programming problems.

UNIT-I

Development-definition-characteristics and phases-Types of models-Operations Research models- applications.

Allocation: Linear Programming Problem Formulation-Graphical solution- Simplex method-Artificial variable techniques: Two-phase method, Big-M method.

UNIT-II

Transportation problem - Formulation-Optimal solution, unbalanced transportation problem- Degeneracy.

Assignment problem- Formulation-Optimal solution, - Variants of Assignment problem- Travelling salesman problem.

UNIT-III

Sequencing- Introduction-Flow-Shop sequencing- n jobs through two machines – n jobs through three machines- Job shop sequencing-two jobs through 'm' machines

Replacement: Introduction- Replacement of items that deteriorate with time- when money value is not counted and counted- Replacement of items that fail completely- Group Replacement.

UNIT-IV

Theory of Games: Introduction- Terminology- Solution of games with saddle points and without saddle points. 2 x 2 gamesdominance principle- m x 2 & 2 x n games- Graphical method.

Inventory: Introduction- Single item, Deterministic models- purchase inventory models with one price break and multiple price breaks- Stochastic models _ Demand may be discrete variable or continuous variable- single period model and no setup cost.

UNIT-V

Waiting lines: Introduction- Terminology- Single channel- Poisson arrivals and Exponential service times with infinite population.

Dynamic Programming: Introduction- Terminology, Bellman's principle of optimality- Applications of Dynamic programming- shortest path problem- linear programming problem.

Text Books:

- 1. Operations Research/ J. K. Sharma4e./ MacMilan.
- 2. Introduction to OR/ Hillier & Libemann/TMH.

- 1. Introduction to OR/Taha/PHI.
- 2. Operations Research/NVS Raju/SMS Education/3rd Revised Edition.
- 3. Operations Research / A. M. Natarajan, P.Balasubramaniam, A. Tamilarasi/Pearson Education.
- 4. Operations Research/ Wagner/ PHI Publications.
- 5. Operations Research/M.V. Durga Prasad, K.Vijaya Kumar Reddy, J. Suresh Kumar/Cengage Learning.

ME507PC: INSTRUMENTATION AND CONTROL SYSTEMS LAB

Course Code	Category	Ho	ours/Wee	ek	Credits	Max	imum M	larks
ME507PC	Core	L	Т	P	C	CIA	SEE	Tota
Contact Classes: Nil	Tutorial Classes: Nil	- P	- ractical	2 Classes	<u> </u>	30 Tot a	70 al Classe	100 s: 30
	les of Instrumentation and co							
Course Objectives:								
	d their types that would occur	in an inst	rument.					
	s used for evaluating the ther							
	, , , , , , , , , , , , , , , , , , ,	•						
Course Outcomes: At the en	d of the course, the student v	vill be able	e to					
1. Characterize and cali	brate measuring devices.							
2. Identify and analyze	errors in measurement.							
3. Analyze measured da	ata using regression analysis.							
4. Calibration of Pressu	re Gauges, temperature, LVI	DT, capaci	tive trans	ducer,	rotameter.			
List of Experiments: Minin	num of 12 Exercises need to	be perform	ned					
1. Calibration of Pressu	re Gauges.							
2. Calibration of transdu	acer for temperature measure	ment.						
3. Study and calibration	of LVDT transducer for disp	lacement	measure	ment.				
4. Calibration of strain	gauge for temperature measu	rement.						
5. Calibration of thermo	ocouple for temperature meas	urement.						
6. Calibration of capacit	tive transducer for angular di	splacemer	nt.					
7. Study and calibration	of photo and magnetic speed	l pickups f	for the m	easuren	nent of spee	d.		
8. Calibration of resista	nce temperature detector for	temperatu	re measu	rement.				
9. Study and calibration	of a rotameter for flow meas	urement.						
10. Study and use of a S	eismic pickup for the measur	ement of v	vibration	amplitu	ide of an eng	gine bed	at variou	s loads
11. Study and calibratic	on of McLeod gauge for low p	pressure.						
12. Measurement and co	ontrol of Pressure of a process	using SCA	ADA syst	em.				
13. Measurement and co	ontrol of level in a tank using o	capacitive	transduce	er with S	SCADA.			
14. Measurement and co					_		a	

ME508PC: METROLOGY & MACHINE TOOLS LAB

Course Code	Category	H	lours/We	ek	Credits	Max	imum N	Iarks
ME508PC	Core	L	Т	P	С	CIA	SEE	Tota
Contact Classes: Nil	Tutorial Classes: Nil	-	- Practical		1 x• 30	30 Tots	70 al Classe	100
	xposure to Metrology and ma			Classes	5. 30	1012		28. 30
Course Objectives:	1							
1. To learn the Step turn	ning and taper turning and three	ead cutti	ng Drilliı	ng and T	apping on th	he lathe r	nachine	
-	Shaping and Planing and mill		0	0				
3. To conduct experime	ents and understand the working	ng of the	same.					
4. To import practical e	xposure to the metrology equi	ipment &	& Machin	e Tools.				
5. To learn the measure	ment of the Angle and tapers	by Beve	l protract	or, Sine	bars, etc.			
Course Outcomes:								
1.Perform plain turning	, step turning and Grooving o	n a circu	lar rod					
2. Perform the step turn	ing and taper turning on a circ	cular rod	l					
3. Perform thread cuttin	g and knurling on a circular C	C.S rod a	nd using	the lathe	e machine			
4. Drill a hole and perfo	orm tapping once given work	piece.						
5. Slotting operation on	a given specimen							
List of Experiments:								
1. Step turning on lathe	machine.							
2. Taper turning on lath	e machine.							
3. Thread cutting and k	nurling on lathe machine (2 ex	(kercises						
4. Measurement of cutti	ng forces on lathe.							
5. Machining of holes u	sing Drilling and boring mach	nines.						
6. Gear cutting on the N	Ailling machine.							
7. Grinding of Tool ang	les using Cylindrical / Surface	e Grindi	ng.					
8. Measurement of leng	ths, heights, diameters by ver	nier calij	pers, mic	rometers	5.			
9. Measurement of Diar	neter of bores by internal mic	rometers	s and dial	bore in	dicators.			
10. Use of gear teeth ve	rnier calipers for checking the	e chordal	l addendu	im and c	hordal heigh	ht of the	spur gea	r.
11. Angle and taper me	asurements by bevel protracto	or and sin	ne bars.					
12. Thread measurement	nt by 2-wire and 3-wire metho	ds.						
13. Surface roughness r	neasurement by Tally Surf.							
14. Use of mechanical of	omportor							

ME509PC: KINEMATICS & DYNAMICS LAB

Course Code	Category	H	ours/W	eek	Credits	Max	imum M	larks
ME509PC	Core	L	Т	Р	С	CIA	SEE	Total
Contact Classes: Nil	Tutorial Classes: Nil	-	-	2 al Classes	1	30 Tata	70	100
	for the graduate-level cour						l Classe	
	elocity, acceleration, force, t			-			-	
Effect, Cams, Bearings.	elocity, acceleration, lorce, t	orque, p	ower, r	NEWION S	monon na	ws, vibia	uon, Oy	loscopi
Course Objectives:								
ů –	e of the lab is to understand	the kine	motion	and dum	mice of me	abanical	alamant	a ayah a
C C	ars, cams and learn to design			•				s such a
00	e critical speed of shaft under			•			i tasks.	
	id the gyroscopic effect and co	U						
	the balancing of rotating mass			0.	1			
	e characteristic curves of Wa	•		C C		nors and r	notion c	urves fo
	m follower setup.				C			
Course Outcomes:	-							
Upon successful completion	on of this lab, students shou	ld be ab	e to:					
1. Understand	types of follower motion and	d cam m	echanis	sm.				
2. Analyze force	ces and torques of compone	nts in li	nkages.					
3. Understand	static and dynamic balance.							
4. Understand	forward and inverse kinema	atics of c	pen-lo	op mech	anisms.			
5. Measure vib	ration parameters in single	degree f	reedom	system	s.			
List of Experiments: (A M	finimum of 10 experiments an	re to be c	onducte	d)				
1. To determine	e the state of balance of mac	chines fo	or prima	ary and s	secondary f	forces.		
2. To determine	e the frequency of torsional	vibratio	n of a g	jiven roc	1.			
3. Determine th	e effect of varying mass on	the cen	tre of sl	eeve in	porter and	proell go	overnor.	
4. Find the mot	ion of the follower if the gi	ven prof	ile of th	ne cam.				
5. The balance	masses statically and dynar	nically f	or sing	le rotatir	ng mass sys	stems.		
6. Determine th	e critical speed of a given s	haft for	differei	nt n-con	ditions.			
7. For a simple	pendulum determine time	period a	nd its na	atural fre	equency.			
8. For a compo	und pendulum determine ti	me perio	d and i	ts natura	al frequency	V		

- 9. Determine the effect of gyroscope for different motions.
- 10. Determine time period, amplitude and frequency of undamped free longitudinal vibration of single degree spring mass systems.
- 11. Determine the pressure distribution of lubricating oil at various load and speed of a Journal bearing.
- 12. Determine time period, amplitude and frequency of damped free longitudinal vibration of single degree spring mass systems.

*MC509: INTELLECTUAL PROPERTY RIGHTS

Course Code	Category	Hou	ırs/W	eek	Credits	Ν	Iax Mai	rks
		L	Т	Р	С	CIA	SEE	Total
MC509	MC	3	0	0	0	30	70	100
Contact Classes:45	Tutorial Classes: Nil		Pract	ical C	lasses: Nil	Tota	al Class	es: 45
UNIT-I								
Introduction to Intellectual prop		ellectua	al pro	perty,	international of	rganizati	ons, age	ncies an
treaties, importance of intellectua	al property rights.							
UNIT-II								
Trade Marks: Purpose and function	-	of trade	mark	rights	, protectable m	atter, sel	ecting, a	ind
evaluating trade mark, trade mar	k registration processes.							
UNIT-III								
work publicly, copy right owner	ship issues, copy right registrati	ion, no	tice of	f copy	right, internatio	onal copy	-	
work publicly, copy right owners Law of patents: Foundation of pa UNIT-IV Trade Secrets: Trade secrete law protection for submission, trade	ship issues, copy right registration atent law, patent searching proc	ion, no ess, ov	tice of vnersh	f copy nip rigl	right, internation	onal copy	y right la	aw.
Law of copy rights: Fundament work publicly, copy right owner Law of patents: Foundation of pa UNIT-IV Trade Secrets: Trade secrete law protection for submission, trade Unfair competition: Misappropri UNIT-V	ship issues, copy right registration atent law, patent searching proc	ion, no ess, ov	tice of vnersh	f copy nip rigl	right, internation	onal copy	y right la	aw.
work publicly, copy right owners Law of patents: Foundation of pa UNIT-IV Trade Secrets: Trade secrete law protection for submission, trade Unfair competition: Misappropri	ship issues, copy right registration atent law, patent searching processing the determination of trade secrete secrete litigation. Station right of publicity, false ac	status,	tice o vnersl liabil ng.	f copy hip rigl	right, internation nts and transfer misappropriat	ions of tr	y right la	aw. ets,
work publicly, copy right owners Law of patents: Foundation of pa UNIT-IV Trade Secrets: Trade secrete law protection for submission, trade Unfair competition: Misappropri UNIT-V New development of intellectua	ship issues, copy right registration atent law, patent searching processing the determination of trade secrete secrete litigation. Station right of publicity, false ac	status,	tice o vnersl liabil ng.	f copy hip rigl	right, internation nts and transfer misappropriat	ions of tr	y right la	aw. ets,
work publicly, copy right owners Law of patents: Foundation of pa UNIT-IV Trade Secrets: Trade secrete law protection for submission, trade Unfair competition: Misappropri UNIT-V New development of intellectua property audits.	ship issues, copy right registration atent law, patent searching processor, determination of trade secrete secrete litigation. ation right of publicity, false action al property: new developments	ion, nor eess, ow status, lvertisi	tice o vnersh liabii ng. de ma	f copy hip right lity for	right, internation nts and transfer misappropriation v; copy right la	ions of tr	y right la	nw. rets, ntellectu
work publicly, copy right owners Law of patents: Foundation of pa UNIT-IV Trade Secrets: Trade secrete law protection for submission, trade Unfair competition: Misappropri UNIT-V New development of intellectua property audits. International overview on intellectual	ship issues, copy right registration atent law, patent searching processor, determination of trade secrete secrete litigation. A property: new developments ectual property, international –	ion, nor eess, ow status, lvertisi	tice o vnersh liabii ng. de ma	f copy hip right lity for	right, internation nts and transfer misappropriation v; copy right la	ions of tr	y right la	nw. rets, ntellectu
work publicly, copy right owners Law of patents: Foundation of pa UNIT-IV Trade Secrets: Trade secrete law protection for submission, trade Unfair competition: Misappropri UNIT-V New development of intellectua property audits. International overview on intellectual	ship issues, copy right registration atent law, patent searching processor, determination of trade secrete secrete litigation. A property: new developments ectual property, international – de secrets law.	ion, nor eess, ow status, lvertisi	tice o vnersh liabii ng. de ma	f copy hip right lity for	right, internation nts and transfer misappropriation v; copy right la	ions of tr	y right la	nw. rets, ntellectu
work publicly, copy right owners Law of patents: Foundation of pa UNIT-IV Trade Secrets: Trade secrete law protection for submission, trade Unfair competition: Misappropri UNIT-V New development of intellectua property audits. International overview on intellectua international development in trade Text Books & Reference Bo	ship issues, copy right registration atent law, patent searching processor, determination of trade secrete secrete litigation. A property: new developments ectual property, international – de secrets law.	status, in trade n	tice o vnersk liabi ng. de ma hark l	f copy hip right lity for urk law aw, co	right, internation nts and transfer misappropriation v; copy right la	ions of tr	y right la	nw. rets, ntellectu

*MC510ME: ANALYSIS LAB

Course Code	Category	H	ours/We	eek	Credits	Max	imum M	Iarks
MC511ME	Core	L	Т	Р	С	CIA	SEE	Total
Contact Classes: Nil	Tutorial Classes: Nil	-	- Practica		0	30 Toto	70 Il Classe	100
Course Objectives:	Tutorial Classes. Ivil		Tacuca		5. 43	1018	li Classe	3. 43
Ũ	cation of FEA using the ANS	YS softw	/are					
 Learn the proper use 	C C	10 0010	ure					
	els or transfer CAD models of	f structur	es produ	icts con	nonents or	systems		
-	s or other design performance		-		iponento, or	systems.		
Course Outcomes:								
	ourse the student will be able	to						
			our d 410 o	CUI				
	s of ANSYS capabilities, tern			GUI.				
-	n a complete ANSYS analysi		-	looda aa	lying & novi	annin a ma	aulta	
-	ge in building solid models &				÷	-		f anital.
-	nodel and analyse for finding	g stress,	tempera	ture dist	ribution etc.	with the	e neip oi	suitad
boundary conditions.								
-	following analysis can be pe	rtormed	by using	g any of	the analysis	softwar	e(s) like	ANSY
LGOR, NASTRAN, NISA,	-							
	: Truss and Frame Structures							
(i) 2-D truss								
(ii) 3-D truss								
(iii) Beam analysis								
	IS: Two Dimensional Problem	ns and T	hree Dir	nensiona	al Problems			
(i) 2-D structure with	-							
(ii) 2-D structures with	n different materials							
(iii) Plate with hole								
(iv) Axi-Symmetric C	component							
(v) Stepped bar								
3. DYNAMIC ANALYS	IS: Modal and Transient Ana	lyses						
(i) Modal analysis								
(ii) Transient Response	se (spring-mass system)							
4. NON-STRUCTURAL	PROBLEMS							
(i) Steady State heat the	ransfer							

LEARNING RESOURCES

REFERENCES:

- 1. Introduction to Finite elements in Engineering by Chandrupatla• & Belegundu, PHI, 2010.
- 2. Ansys, " Multiphysics User's Manual"

*MC511EC: CYBER SECURITY

Course Code	Category	Ho	urs/W	/eek	Credits	Ν	Max Marl	
		L	Т	T P C CIA	SEE	Total		
MC511EC	MC	3	0	0	0	30	70	100
Contact Classes:50	Tutorial Classes: Nil	I Practical Classes: Nil Total C					al Class	es: 50
Prerequisites: Nil		•				•		
Course objectives:								
1. To familiarize various ty	pes of cyber-attacks and cyber	-crimes	5					
2. To give an overview of	the cyber laws							
3. To study the defensive t	echniques against these attacks							
Course Outcomes: The studer	nts will be able to understand cy	ber-att	acks, t	types of	f cybercrimes,	cyber lav	ws and a	lso how t
protect them self and ultimately	the entire Internet community f	from su	ch atta	acks.				

Introduction to Cyber Security: Basic Cyber Security Concepts, layers of security, vulnerability, threat, Harmful acts, Internet Governance – Challenges and Constraints, Computer Criminals, CIA Triad, Assets and Threat, motive of attackers, active attacks, passive attacks, Software attacks, hardware attacks, Spectrum of attacks, Taxonomy of various attacks, IP spoofing, Methods of defense, Security Models, risk management, Cyber Threats-Cyber Warfare, Cyber Crime, Cyber terrorism, Cyber Espionage, etc., Comprehensive Cyber Security Policy.

UNIT-II

Cyberspace and the Law & Cyber Forensics: Introduction, Cyber Security Regulations, Roles of International Law. The INDIAN Cyberspace, National Cyber Security Policy.

Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Forensics Investigation, Challenges in Computer Forensics, Special Techniques for Forensics Auditing.

UNIT-III

Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.

UNIT-IV

Cyber Security: Organizational Implications: Introduction, cost of cybercrimes and IPR issues, web threats for organizations, security and privacy implications, social media marketing: security risks and perils for organizations, social computing and the associated challenges for organizations.

Cybercrime and Cyber terrorism: Introduction, intellectual property in the cyberspace, the ethical dimension of cybercrimes the psychology, mindset and skills of hackers and other cyber criminals.

UNIT-V

Privacy Issues: Basic Data Privacy Concepts: Fundamental Concepts, Data Privacy Attacks, Data linking and profiling, privacy policies and their specifications, privacy policy languages, privacy in different domains- medical, financial, etc.

Cybercrime: Examples and Mini-Cases

Examples: Official Website of Maharashtra Government Hacked, Indian Banks Lose Millions of Rupees, Parliament Attack, Pune City Police Bust Nigerian Racket, e-mail spoofing instances.

Mini-Cases: The Indian Case of online Gambling, An Indian Case of Intellectual Property Crime, Financial Frauds in Cyber Domain.

Text Books:

- 1. Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley
- B. B. Gupta, D. P. Agrawal, Haoxiang Wang, Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives, CRC Press, ISBN 9780815371335, 2018.

Reference Books:

1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.

2. Introduction to Cyber Security, Chwan-Hwa(john) Wu,J. David Irwin, CRC Press T&F Group.

ME601PC: DESIGN OF MACHINE MEMBERS - II

Course Code	Category	Hou	rs/Weel	K	Credits	Max	imum I	Marks
ME601PC	Core	L	Т	P	С	CIA	SEE	Tota
		3	0	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15		ctical C				l Class	es: 60
Prerequisite: Study of engine	eering mechanics, design of	machine m	embers-	I and t	heory of ma	chines.		
Course Objectives:								
1. To gain knowledge abo	out designing the commonly	used impo	rtant ma	chine 1	nembers suc	ch as bea	rings, er	ngine
parts, springs, belts, ge	ears etc.							
2. To design the compone	ents using the data available	in design d	ata book	s.				
3. To design a power tran	smission system through be	lt, rope and	l chain di	rive to	meet desire	d needs	in engine	eering
applications.								
4. To impart design skills	to the students to apply thes	se skills for	the prob	olems	in real life ir	dustrial	applicat	ions.
5. Apply failure theories	in evaluating strength of mac	chine elem	ents.					
Course Outcomes:								
Upon Completion of this cour	se, students will be able to:							
1. Knowledge about jour	nal bearing design using diff	erent empi	rical rela	tions.				
2. Estimation of life of ro	lling element bearings and th	neir selectio	on for gi	ven se	rvice conditi	ons.		
3. Acquaintance with des	sign of the components as pe	er the stand	dard, rec	omme	nded proced	ures wh	ich is es	sential
design and developme	ent of machinery in industry							
4. Apply the design conce	epts to estimate the strength	of the gear						
5. Select suitable belt driv	ves and associated elements	from manu	facturers	s catal	ogues under	given		
loading condition	ons							
UNIT – I								
Sliding contact bearings:	Types of Journal bearings	– Lubric	ation –	Beari	ng Modulu	s – Full	and pa	rtial
bearings – Clearance ratio –					0			.i vitui
carings – cicarance rano –	ricat dissipation of bearing	igs, ocarm	g mater		journai oca	ing ues	ngn.	
UNIT – II								

design and selection of ball & roller bearings.

UNIT – III

Engine Parts: Connecting Rod: Thrust in connecting rod – stress due to whipping action on connecting rod ends –Pistons, Forces acting on piston – Construction, Design, and proportions of piston.

 $\mathbf{UNIT} - \mathbf{I}\overline{\mathbf{V}}$

Mechanical Springs: Stresses and deflections of helical springs – Extension and compression springs

Design of springs for fatigue loading – natural frequency of helical springs – Energy storage capacity

helical torsion springs – Design of co-axial springs, Design of leaf springs.

Belts & Pulleys: Transmission of power by Belt and Rope Drives, Transmission efficiencies, Belts – Flat and V types – Ropes - pulleys for belt and rope drives.

 $\mathbf{UNIT} - \mathbf{V}$

Gears: Spur gears & Helical gears- Brief introduction involving important concepts – Design of gears using AGMA procedure involving Lewis and Buckingham equations. Check for wear.

Textbooks:

- 1. Design of Machine Elements / Spotts/ Pearson.
- 2. Machine Design / Pandya & Shah / Charothar.

- 1. Design of Machine Elements-II / Kannaiah / New Age.
- 2. Design of Machine Elements / Sharma and Purohit/PHI.
- 3. Design Data Book/ P.V. Ramana Murti & M. Vidyasagar/ B.S. Publications.
- 4. Design Data Handbook/ S. Md. Jalaludeen/ Anuradha Publishers.

ME602PC: HEAT TRANSFER

Course Code	Category	Hou	rs/Wee	k	Credits	Max	imum I	Marks
ME602PC	Core	L	Т	P	C	CIA	SEE	Tota
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pra	actical (Classe	s: Nil	Tota	l Class	es: 60
rerequisite: Thermodynam	105							
Ū		1				1	C	
*	vledge about application of o	conduction	i, convec	ction a	nd radiation	heat tra	nster co	ncepts 1
different practica	**	1 /	1 1					
	e mechanisms of heat transfe		•			IS.		
	e concepts of heat transfer th	-						
	mal analysis and sizing of he	-					-	
	he fundamentals of heat trans	•		0		e	•	stems an
apply analytic pr	ocedures, numerical tools and	d problem	-solving	abilitie	es to heat tra	nsfer pro	blems.	
Course Outcomes: At the end	nd of this course, student will	l be able to)					
1. Understand the basic r	nodes of heat transfer.							
2. Compute one dimension	onal steady state heat transfer	r with and	without	heat ge	eneration.			
3. Understand and analyz	ze heat transfer through exter	nded surfac	ces.					
4. Understand one dimen	sional transient conduction h	eat transfe	er.					
5. Understand concepts of	of continuity, momentum and	energy eq	uations.					
6. Interpret and analyze f	forced and free convective he	at transfer	•					
7. Understand the princip	ples of boiling, condensation	and radiat	ion heat	transfe	r.			
8. Design of heat exchan	gers using LMTD and NTU	methods.						
UNIT – I								
ntroduction: Modes and m	nechanisms of heat transfer	- Basic	laws of	f heat	transfer –	General	discussi	on abo
pplications of heat transfer.								
Conduction Heat Transfer:	Fourier rate equation - Ge	eneral heat	conduc	tion ec	quation in C	Cartesian	, Cylind	lrical ar
pherical coordinates – simpli	fication and forms of the field	equation -	- steady,	unstea	dy, and peri	odic hea	t transfe	r – Initi

Composite systems– overall heat transfer coefficient – Electrical analogy – Critical radius of insulation.

UNIT – II

One Dimensional Steady State Conduction Heat Transfer: Variable Thermal conductivity – systems with heat sources or Heat Generation-Extended surface (fins) Heat Transfer – Long Fin, Fin with insulated tip and Short Fin, Application to error measurement of Temperature.

One Dimensional Transient Conduction Heat Transfer: Systems with negligible internal resistance

Significance of Biot and Fourier Numbers –Infinite bodies- Chart solutions of transient conduction systems- Concept of Semi-infinite body.

UNIT – III

Convective Heat Transfer: Classification of systems based on causation of flow, condition of flow, configuration of flow and medium of flow – Dimensional analysis as a tool for experimental investigation-Buckingham Π Theorem and method, application for developing semi – empirical non- dimensional correlation for convection heat transfer – Significance of non-dimensional numbers – Concepts of Continuity, Momentum and Energy Equations – Integral Method as approximate method -Application of Von Karman Integral Momentum Equation for flat plate with different velocity profiles.

Forced convection: External Flows: Concepts about hydrodynamic and thermal boundary layer and use of empirical correlations for convective heat transfer -Flat plates and Cylinders.

UNIT – IV

Internal Flows: Concepts about Hydrodynamic and Thermal Entry Lengths – Division of internal flow based on this – Use of empirical relations for Horizontal Pipe Flow and annulus flow.

Free Convection: Development of Hydrodynamic and thermal boundary layer along a vertical plate - Use of empirical relations for Vertical plates and pipes.

Heat Exchangers: Classification of heat exchangers – overall heat transfer Coefficient and fouling factor – Concepts of LMTD and NTU methods - Problems using LMTD and NTU methods.

UNIT – V:

Heat Transfer with Phase Change:

Boiling: - Pool boiling - Regimes - Calculations on Nucleate boiling, Critical Heat flux and Film boiling.

Condensation: Film wise and drop wise condensation –Nusselt's Theory of Condensation on a vertical plate - Film condensation on vertical and horizontal cylinders using empirical correlations.

Radiation Heat Transfer: Emission characteristics and laws of black-body radiation – Irradiation – total and monochromatic quantities – laws of Planck, Wien, Kirchoff, Lambert, Stefan and Boltzmann– heat exchange between two black bodies – concepts of shape factor – Emissivity – heat exchange between grey bodies – radiation shields – electrical analogy for radiation networks.

Text Books:

- 1. Heat and Mass Transfer Dixit /Mc Graw Hill.
- 2. Heat and Mass Transfer / Altamush Siddiqui/ Cengage.

- 1. Essential Heat Transfer Christopher A Long / Pearson.
- 2. Heat Transfer –Ghoshdastidar / Oxford.

ME603PC: CAD & CAM

Course Code	urse Code Category		rs/Wee	k	Credits	dits Maximum Ma		Marks
ME603PC	Core	L	Т	P	С	CIA	SEE	Total
		3	0	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pra	ctical (Classe	s: Nil	Tota	l Class	es: 60
	mportance and use of compute	er in desigi	n and ma	nufact	ure.			
Course Objectives:								
1. To provide an overv	iew of how computers are be	eing used i	in design	n, deve	elopment of	manufa	cturing p	olans an
manufacture.								
2. To understand the new	ed for integration of CAD and	CAM.						
3. To Develop program	ming and operating skills for c	computer n	umerical	l contr	ol (CNC) ma	achines.		
4. To Understand conce	pt of Group Technology, FMS	S and CIM	•					
5. To Understand the fu	ndamentals used to create and	manipulat	te geome	etric m	odels.			
Course Outcomes:								
Upon Completion of this cou	urse, students will be able to:							
1. Describe basic stru	cture of CAD workstation, I	Memory ty	pes, inp	out/out	put devices	and dis	play dev	vices an
computer graphics.					-			
2. Acquire the knowle	dge of geometric modeling a	nd Execute	the step	os requ	ired in CAI) softwa	re for de	evelopin
-	and perform transformations.							•
	ncepts of CNC programming	and machi	ning.					
-	hnology, CAQC and CIM cor		U					
5. Write the CNC part		1						
·····	F 8-							
LINIT _ I								
UNIT – I								
Fundamentals of CAD/ CA	M, Application of computers D/ CAM, Design workstation		-		÷			

Geometric Modeling: Wire frame modeling, wire frame entities, Interpolation and approximation of curves, Concept of parametric and non-parametric representation of curves, Curve fitting techniques, definitions of cubic spline, Bezier, and B-spline.

UNIT – II

Surface modeling: Algebraic and geometric form, Parametric space of surface, Blending functions, parametrization of surface patch, Subdividing, Cylindrical surface, Ruled surface, Surface of revolution Spherical surface, Composite surface, Bezier surface. B-spline surface, Regenerative surface and pathological conditions.

Solid Modelling: Definition of cell composition and spatial occupancy enumeration, Sweep representation, Constructive solid geometry, Boundary representations.

UNIT – III

NC Control Production Systems: Numerical control, Elements of NC system, NC part programming: Methods of NC part programming, manual part programming, Computer assisted part programming, Post Processor, Computerized part program, SPPL (A Simple Programming Language). CNC, DNC and Adaptive Control Systems.

 $\mathbf{UNIT} - \mathbf{IV}$

Group Technology: Part families, Parts classification and coding. Production flow analysis, Machine cell design.

Computer aided process planning: Difficulties in traditional process planning, Computer aided process planning: retrieval type and generative type, Machinability data systems.

Computer aided manufacturing resource planning: Material resource planning, inputs to MRP, MRP output records, Benefits of MRP, Enterprise resource planning, Capacity requirements planning.

UNIT – V

Flexible manufacturing system: F.M.S equipment, FMS layouts, Analysis methods for FMS benefits of FMS.

Computer aided quality control: Automated inspection- Off-line, On-line, contact, Non-contact; Coordinate measuring machines, Machine vision.

Computer Integrated Manufacturing: CIM system, Benefits of CIM.

Textbooks:

- 1. CAD/CAM Concepts and Applications / Alavala / PHI.
- 2. CAD/CAM Principles and Applications / P. N. Rao / Mc Graw Hill.

- 1. CAD/CAM/ Groover M.P/ Pearson.
- 2. CAD/CAM/CIM/ Radhakrishnan and Subramanian / New Age.

ME604PC: FINITE ELEMENT METHODS

Course Code	Category	Hou	rs/Weel	K	Credits	Maximum Marks			
ME604PC	Core	re L		P	C	CIA	SEE	Total	
		3	0	-	3	30	70	100	
Contact Classes: 45	Tutorial Classes: 15	Pra	Total Classes: 60						
Prerequisite: Mechanics of Second	olids								
Course Objectives:									
	s of Finite Element Analysi								
*	terial models for structural i				U				
3. To understand modeling	g of engineering systems and	l Soil–Stru	acture Int	teracti	on (SSI).				
4. To create importance of	f interfaces and joints on the	behavior	of engine	ering	systems.				
5. To create awareness im	plementation of material mo	del in fini	te elemer	nt met	hod and appl	ications			
Course Outcomes:									
Upon Completion of this	course, students will be able	e to:							
	ethod to solve problems in s		anics. flu	id me	chanics and	heat tran	sfer.		
	oblems in one dimensional s								
-	istic equations for two dime		-		,				
	ain strain, axi- symmetric ar			oblem	s				
	and eigen vectors for step	-				r geome	tric and	mater	
nonlinearity.	and eigen vectors for step		ia beam	, expla	un nommea	r geome		mater	
UNIT – I									
inter duction to Finite Flowent 1	Matha day Cananal Dua as duna	Ensing		1: :	one Stuces	and Day	.:1:1	Charles	
ntroduction to Finite Element I		-		-		-			
Displacement relations. Stress	- strain relations: Finite El	ements: 1	- Dimen	sional	, 2 - Dimen	isional,	3-Dimen	isional	
nterpolation Elements									
One Dimensional Problems: 1-	D Linear and 1-D Quadratic	e Elements	s - Finite		ent modeling			ind sha	
	-								
functions. Assembly of Globa	-	d vector.	Finite e	lemen	t equations,	Treatm	ent of	bounda	

Analysis of Trusses: Derivation of Stiffness Matrix for Plane Truss, Displacement of Stress Calculations.

Analysis of Beams: Element stiffness matrix for two noded, two degrees of freedom per node beam element, Load Vector,

Deflection.

UNIT – III

Finite element modeling of two-dimensional stress analysis with constant strain triangles and treatment of boundary conditions, Estimation of Load Vector, Stresses

Finite element modeling of Axi-symmetric solids subjected to Axi-symmetric loading with triangular elements. Two dimensional four noded Isoparametric elements and numerical integration.

$\mathbf{UNIT}-\mathbf{IV}$

Steady State Heat Transfer Analysis: one dimensional analysis of Slab, fin and two-dimensional analysis of thin plate.

UNIT – V

Dynamic Analysis: Formulation of finite element model, element - Mass matrices, evaluation of Eigen values and Eigen vectors for a stepped bar, truss and beam.

Finite element – formulation to 3 D problems in stress analysis, convergence requirements, Mesh generation. techniques such as semi-automatic and fully Automatic use of softwares such as ANSYS, ABAQUS, NASTRAN using Hexahedral and Tetrahedral Elements.

Textbooks:

- 1. Finite Element Methods: Basic Concepts and applications/Alavala/PHI.
- 2. Introduction to Finite Elements in Engineering, Chandrupatla, Ashok and Belegundu/Pearson.

- 1. An Introduction to the Finite Element Method / J. N. Reddy/ Mc Graw Hill.
- 2. Finite Element Analysis / SS Bhavikatti / New Age.
- 3. Finite Element Method/ Dixit/Cengage.

ME611PE: UNCONVENTIONAL MACHINING PROCESSES (Professional Elective - I)

ME611PE Contact Classes: 45	Core	T						
Contact Classes: 45	Core Tutorial Classes: 15	L	T	Р	C	CIA	SEE	Tota
		<u>3</u> Pra	0 Ictical C	lasse	3 S: Nil	30 Tota	70 Il Class	100 es: 60
urse Objectives:		110	ietieui (1000		C D 1 00
1. To teach the modeling te	chnique for machining prod	cesses.						
2. To teach interpretation of								
3. To teach the mechanics a	_		ip forma	tion.				
4. To teach the effects of to	ol geometry on machining	force com	ponents	and su	rface finish.			
5. To teach the machining s			-					
6								
urse Outcomes:								
1. Understand the basic tech	hniques of Unconventional	Machinin	ig proces	ses mo	deling.			
2. Understand the need and	applications of modern ma	achining p	rocesses					
3. Estimate the material re-	emoval rate and cutting f	force, in	an indus	strially	useful mar	nner, for	Uncon	ventio
Machining processes.								
4. Illustrate the chemical, el	lectrical & mechanical mac	chining pro	ocess.					
5. Develop the economic as	spects of the different unco	nventiona	l machin	ing pro	ocess.			
NIT – I								
roduction – Need for nor	n traditional machining	mathada (lossifics	tion	of modorn	machin	ing pro	000000
siderations in process selection	-		18511100		Ji moderni	maciiii	ing pro	CC35C5
rasonic machining – Eleme			f motol	romo	val process	noron	actors	
C			n meta	Temo	ival process	s, paran	leters, t	econon
siderations, applications and l	initiations, recent develop	nent.						
NIT - II								

process variable, and mechanics of metal removal, MRR, application and limitations.

Electro – Chemical Processes: Fundamentals of electro chemical machining, electrochemical grinding, electro chemical honing and deburring processes, metal removal rate in ECM, Tool design, Surface finish and accuracy, economic aspects of ECM – Simple problems for estimation of metal removal rate.

UNIT – III

Thermal Metal Removal Processes: General Principle and applications of Electric Discharge Machining, Electric Discharge Grinding and electric discharge wire cutting processes – Power circuits for EDM, Mechanics of metal removal in EDM, Process parameters, selection of tool electrode and dielectric fluids, methods surface finish and machining accuracy, characteristics of spark eroded surface and machine tool selection. Wire EDM, principle, applications.

UNIT - IV

Generation and control of electron beam for machining, theory of electron beam machining, comparison of thermal and non-thermal processes –General Principle and application of laser beam machining – thermal features, cutting speed and accuracy of cut.

UNIT – V

Application of plasma for machining, metal removing mechanism, process parameters, accuracy and surface finish and other applications of plasma in manufacturing industries. Chemical machining – principle - maskants - applications. Magnetic abrasive finishing, Abrasive flow finishing, Electro stream drilling, shaped tube electrolyte machining.

Text Books:

- 1. Advanced Machining Processes / VK Jain / Allied publishers.
- 2. Modern Machining Processes P. C. Pandey, H. S. Shan/ Mc Graw Hill.

- 1. Unconventional Manufacturing Processes/ Singh M.K/ New Age Publishers.
- 2. Advanced Methods of Machining/ J.A. McGeough/ Springer International.
- 3. Non-Traditional Manufacturing Processes/ Benedict G.F./ CRC Press.

ME612PE: MACHINE TOOL DESIGN (Professional Elective – I)

Course Code	Category	Hou	rs/Weel	ζ.	Credits	Max	imum N	Marks
ME612PE	Core	L	Т	P	C	CIA	SEE	Tota
		3	0	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15		actical C			Tota	l Class	es: 60
-	ign, Machine Tools and Metro	ology, Ma	chining S	Scienc	e			
Course Objectives: This c	-							
*	sign process when designing	U U		ufactu	ring of a pro	duct.		
2. Apply Geometric Tole	erancing principles in the desi	gns of too	ling.					
3. Evaluate and select ap	propriate materials for tooling	g applicati	ons.					
4. Design, develop and e	valuate cutting tools and wor	k holders t	for a man	ufactu	red product.			
5. Design, develop and during the manufactu	evaluate appropriate Gauging	g systems	to defin	e limi	ts and speci	fications	s of a w	ork pie
-	evaluate tooling for various jo	ining prod	cesses.					
0	s to tool design drawings and	01						
	tional techniques in creating t	•	wings.					
Course Outcomes: At the	end of the course, the studen	t will be a	ble to					
1. Understand basic mot	ions involved in a machine to	ol, design	machine	e tool s	structures, de	esign and	d analyze	e syste
for specified speeds a	and feeds, select subsystems f	for achievi	ng high a	accura	cy in machir	ning.		
2. Understand control s assurance.	strategies for machine tool	operation	s and a	pply a	appropriate	quality	tests fo	r qual
3. Ability enhancement f	for the design of various com	oonents of	structure	es, gui	deways, spir	dles of 1	nachine	tools.
4. Ability enhancement t	to adopt & implement the rece	ent trends	required	as per	the application	ons.		
UNIT – I								
	l Drives and Mechanisms: Ir		n to the	course	e, Working a	and Aux	iliary M	lotions
Iachine Tools, Kinematics of	Machine Tools, Motion Tran	smission.						
UNIT – II								
egulation of Speeds and Fe	eds: Aim of Speed and Fee	l Regulat	ion Ster	med R	egulation of	f Sneeds	Multir	le Sne
Specas and I c	see this of speed and 100	- regula	, stop	rea n	-ouración O	. Spece	,	ne opt

UNIT – III

Design of Machine Tool Structures: Functions of Machine Tool Structures and their Requirements, Design for Strength, Design for Rigidity, Materials for Machine Tool Structures, Machine Tool Constructional Features, Beds and Housings, Columns and Tables, Saddles and Carriages.

UNIT – IV

Design of Guideways, Power Screws and Spindles: Functions and Types of Guideways, Design of Guideways, Design of Aerostatic Slideways, Design of Anti-Friction Guideways, Combination Guideways, Design of Power Screws. Design of Spindles and Spindle Supports: Functions of Spindles and Requirements, Effect of Machine Tool Compliance on Machining Accuracy, Design of Spindles, Antifriction Bearings.

UNIT – V

Dynamics of Machine Tools: Machine Tool Elastic System, Static and Dynamic Stiffness Acceptance Tests.

Text Books:

- 1. Tool Design/ Donaldson/ Fifth Edition, McGraw Hill.
- 2. Principles of Machine Tools/ G.C. Sen and A. Bhattacharyya /New Central Book Agency.

- 1. Design of Machine Tools / D. K Pal, S. K. Basu / Oxford.
- 2. Machine Tool Design and Numerical Control/ N.K. Mehta / Mc Graw Hill.
- 3. Metal Cutting and Tool Design/ Ranganath B.J./ Vikas Publishers.
- 4. Fundamentals of Tool Design/ ASTME, PHI.
- 5. Tooling Data/ Joshi P.H./ Wheeler Publishing.

ME613PE: PRODUCTION PLANNING AND CONTROL (Professional Elective – I)

Course Code	Category	Category Hours/W	rs/Wee	k	Credits	Credits	Max	imum I	Marks
ME613PE	Core	L T		P	C	CIA	SEE	Tota	
		3	0	-	3	30	70	100	
Contact Classes: 45 rerequisites: Management	Tutorial Classes: 15	Pra	actical C	lasse	s: N11	Tota	l Class	es: 60	
Course Objectives:									
Ū	town of Duo duotion alongia	9	1				.:		
*	tance of Production planning			U I	y of carrying	g out vai	nous fur	ictions s	
	oduct, right quantity at right t					2			
-	s with an understanding of th					-		-	
	echniques and their application			-	oject manag	ement a	nd to gr	asp bas	
knowledge about Ma	terials Management, invento	ry control	and MRI	2.					
4. To expose to Aggregat	te planning, its methods and	Routing.							
5. Gain knowledge in fur	ndamental concepts in the fie	ld of stand	lard Sche	duling	g methods, D	ispatchi	ng and f	ollow u	
Course Outcomes:									
1. Define and understand	concepts of PPC and types of	of producti	ion syster	ms					
2. Apply forecasting and	scheduling techniques to pro	oduction sy	stems. U	Inders	tand theory of	of constr	aints for	effectiv	
management of produc	ction systems.								
3. State techniques and MRP and JIT.	their methodology in projec	et manage	ment, M	aterial	Manageme	nt, invei	ntory co	ntrol ar	
	uish the importance of Aggr	egate plan	ning and	its me	thods and kr	now aboi	ut Routir	1g.	
	epts of Scheduling methods, I		-					-8.	
UNIT – I	pro of Scheduling methods,	Disputeinin	ig und for	now u	p.				
ntroduction: Definition – Ol	bjectives of Production Plan	ning and (Control –	- Func	tions of pro	duction	planning	and	
ontrol - Types of production s	systems - Organization of pro	oduction pl	lanning a	nd cor	ntrol departm	nent.			
orecasting – Definition- use	es of forecast- factors affecti	ing the for	ecast- ty	pes of	forecasting	- their u	ses - gei	neral	
		. 1		a taah	niques Med	a a a a a a a a a a a a a a a a a a a	f forage		
rinciple of forecasting. Fore	casting techniques- quantita	ative and o	quantativ	e lech	inques. Mea	asures 0	i ioreca	sting	
rinciple of forecasting. Fore rrors.	ecasting techniques- quantita	ative and o	Juantativ	e tech	inques. Mea	isures o	i ioreca	sting	

Inventory management – Functions of inventories – relevant inventory costs – ABC analysis – VED analysis – Basic EOQ model- Inventory control systems –continuous review systems and periodic review systems, MRP I, MRP

II, ERP, JIT Systems - Basic Treatment only. Aggregate planning – Definition – aggregate-planning strategies – aggregate planning methods – transportation model.

UNIT – III

Line Balancing: Terminology, Methods of Line Balancing, RPW method, Largest Candidate method and Heuristic method.

Routing – Definition – Routing procedure – Factors affecting routing procedure, Route Sheet.

 $\mathbf{UNIT} - \mathbf{IV}$

Scheduling –Definition – Scheduling Policies – types of scheduling methods – differences with loading -flow shop scheduling – job shop scheduling, line of balance (LOB) – objectives - steps involved.

UNIT – V

Dispatching: Definition – activities of dispatcher – dispatching procedures – various forms used in dispatching.

Follow up: definition – types of follow up – expediting – definition – expediting procedures-Applications of computers in planning and control.

Text Books:

- 1. Operations management Heizer- Pearson.
- 2. Production and Operations Management / Ajay K Garg / Mc Graw Hill.

- 1. Production Planning and Control- Text & cases/ SK Mukhopadhyaya /PHI.
- 2. Production Planning and Control- Jain & Jain Khanna publications.

ME600OE: QUANTITATIVE ANALYSIS FOR BUSINESS DECISIONS (Open Elective - I)

Course Code	Category	Hou	rs/Weel	K	Credits	Max	Marks			
ME600OE	Core	L	Т	P	С	CIA SEE		Tota		
		3	0	-	3	30	70	100		
Contact Classes: 45	Tutorial Classes: 15	Pra	ctical C	lasse	es: NIL Total Classes					
ourse Objectives:										
1. Understand the probl	em, identifying decision vari	ables, obje	ctive and	l const	raints.					
2. Formulation of Optim	nization Problem by construc	ting Objec	tive Fun	ction a	and Constrain	nts funct	ions.			
3. Learn to select approx	priate Optimization Technique	ue for the f	ormulate	d Opti	imization Pro	oblem.				
4. Understood the proce	edure involved in the selected	l Optimizat	tion Tech	nnique						
5. Solve the Optimizati	on Model with the selected C	ptimizatio	n Techni	que.						
ourse Outcomes: At the e	nd of the course, student will	be:								
1. Familiar with issues the	nat would crop up in business									
2. Understanding the pro-	blem, identifying variables	& constant	ts, Form	ulation	of optimiza	ation mo	odel and	apply		
appropriate optimiza	tion technique.									
3. Able to formulate Mat	hematical Model to resolve t	he issue.								
4. Able to select technique	ue for solving the formulated	Mathemat	ical Mod	el.						
_	sults obtained through the sel				mentation.					
UNIT – I			•							
	ogramming: Nature and Sco		-	-	-					
• •	Typical Applications of Ope				-	÷	-			
implex Method; Solution me	thodology of Simplex algori	thm, Artifi	cial vari	ables;	Duality Prir	nciple, D	efinition	n of the		
ual Problem, Primal - Dual H	Relationships.									
UNIT – II										
				_						
ransportation and Assignm		••			•					
ransportation Problem, the A	ssignment Model, & Variant	s of assign	ment pro	blems	. Traveling S	Salesmai	n Problei	n.		
UNIT – III										
UINII - III										

Replacement Model: Replacement of Capital Cost items when money's worth is not considered, Replacement of Capital Cost items when money's worth is considered, Group replacement of low-cost items.

$\mathbf{UNIT} - \mathbf{IV}$

Game Theory and Decision Analysis: Introduction – Two Person Zero-Sum Games, Pure Strategies, Games with Saddle Point, Mixed strategies, Rules of Dominance, Solution Methods of Games without Saddle point – Algebraic, arithmetic methods. Decision Analysis: Introduction to Decision Theory, Steps In the Decision Making, the Different environments In Which Decisions Are Made, Criteria For Decision Making Under Risk and Uncertainty, The Expected Value Criterion With Continuously Distributed Random Variables, Decision Trees, Graphic Displays of the Decision Making Process.

$\mathbf{UNIT} - \mathbf{V}$

Queuing Theory and Simulation: Basic Elements of the Queuing Model, Poisson Arrivals and Exponential Service times; Different Queuing models with FCFS Queue discipline: Single service station and infinite population, Single service station and finite population, Multi service station models with infinite population. **Simulation**: Nature and Scope, Applications, Types of simulation, Role of Random Numbers, Inventory Example, Queuing Examples, Simulation Languages.

Text Books:

- 1. Operations Research: Theory and Applications/ J. K. Sharma: / Macmillan, 2008.
- 2. Operations Research/ Er. Prem Kumar Gupta & Dr. D. S. Hira / S. Chana, 2016.

- 1. Introduction To Operations Research; Hillier/Lieberman/TMH, 2008.
- 2. Render: Quantitative Analysis for Management, Pearson, 2009.
- 3. Quantitative Analysis for Business Decisions / Sridharabhat/ HPH, 2009.
- 4. Operations Research / R. Panneerselvam/ PHI, 2008.
- 5. Operations Research: An Introduction / Hamdy, A. Taha/ PHI, 2007.
- 6. Quantitative Techniques/ Selvaraj/ Excel, 2009.
- 7. Quantitative Techniques for Decision Making / Gupta and Khanna/ PHI, 2009.
- 8. Operations Research/ Ravindran, Phillips, Solberg/ Wiley, 2009.
- 9. Quantitative Methods for Business/ Anderson, Sweeney, Williams/ 10/e, Cengage, 2008.

ME605PC: HEAT TRANSFER LAB

Course Code	Category	He	ours/We	ek	Credits	Maxi	imum M	larks
ME605PC	Core	L	Т	P	С	CIA	SEE	Tota
Contact Classes: Nil	Tutorial Classes: Nil	- D	- Proctico	2 Classes	1	30 Toto	70 I Classe	100
erequisite: Thermody			Tacuca		. 30	1014	1 Classe	3. 30
ourse Objectives:								
Ũ	ent to apply conduction, c	onvestion	and m	adiation	haat trans	for conc	onta to	prosti
	ent to apply conduction, o	onvection	i allu i	auration	licat trails		epis io	practic
applications.		4 1	fleet		n d :40 on m1:0	ations		
	nental concepts to students in						4 1.	6 1.
	actical significance of various	us param	eters th	ose are	involved in	1 differer	it mode	s or ne
transfer.		c	CC		1	c 11		
·	thods to calculate the heat tra					•	ems.	
	dge of heat transfer in an effec				application	s.		
	end of the lab sessions, the stu							
1. Perform steady state	conduction experiments to est	timate the	ermal co	nductivi	ty of differe	nt materi	als.	
2. Perform transient hea	at conduction experiment.							
3. Estimate heat transf	fer coefficients in forced co	onvection	, free	convecti	on, conden	sation an	d corre	late w
theoretical values.								
4. Obtain variation of te	emperature along the length of	f the pin f	in under	forced	and free con	vection.		
5. Perform radiation exp	periments: Determine surface	emissivi	ty of a te	est plate	and Stefan-	Boltzma	nn's con	istant a
compare with theore	etical value.							
st of Experiments: Mini	mum twelve experiments from	n the foll	owing:					
1. Composite Slab App	aratus – Overall heat transfer	co-efficie	nt.					
2. Heat transfer through								
3 Heat Transfer throug								
5. Hour Hunster throug								
4. Thermal Conductivit	l lagged pipe. h a Concentric Sphere.							
-	a lagged pipe. h a Concentric Sphere. y of given metal rod.							
4. Thermal Conductivit	n lagged pipe. h a Concentric Sphere. y of given metal rod. ïn.							
 Thermal Conductivit Heat transfer in pin-f 	a lagged pipe. h a Concentric Sphere. y of given metal rod. in. ient Heat Conduction.							
 4. Thermal Conductivit 5. Heat transfer in pin-f 6. Experiment on Trans 	a lagged pipe. h a Concentric Sphere. y of given metal rod. in. ient Heat Conduction. ed convection apparatus.							
 4. Thermal Conductivit 5. Heat transfer in pin-f 6. Experiment on Trans 7. Heat transfer in force 	a lagged pipe. h a Concentric Sphere. y of given metal rod. in. ient Heat Conduction. ed convection apparatus. ral convection.							

- 11. Stefan Boltzman Apparatus.
- 12. Critical Heat flux apparatus.
- 13. Study of heat pipe and its demonstration.
- 14. Film and Drop wise condensation apparatus.

ME606PC: CAD & CAM LAB

	Course Code	Category	H	lours/V	Veek	Credits	Ma	ximum	Marks
	ME606PC	Core	L	Т	Р	C	CIA	SEE	Total
(Contact Classes: Nil	Tutorial Classes: Nil	-	– – Practio	2 al Clas	1 sses: 30	30 Tot	70 al Class	100 ses: 30
		posure to usage of software							
needec	l to analyze and simulate e	engineering systems.		-			-	-	
Cours	se Objectives:								
1.	To make the students un	derstand and interpret drawin	ngs of ma	achine o	compon	ents			
2.	To prepare assembly dra	wings both manually and usi	ng stand	ard CA	D pack	ages			
3.	To gain practical experie	ence in handling 2D drafting	and 3D r	nodelli	ng softv	ware system	s.		
4.	To study the features of	CNC Machine Tool.							
5.	To expose the students to	o different applications of sin	nulation	and ana	alysis to	ools.			
Cours	se Outcomes: Upon com	pletion of this course the stud	dents wil	l be ab	le to				
1.	Recreate part drawings,	sectional views and assembly	/ drawing	gs as pe	er stand	ards			
2.	Draw 3D and Assembly	drawing using CAD software	e.						
3.	Demonstrating manual p	art programming with G and	M codes	s using	CAM.				
4.	Analyze the stress and st	rain induced in plates, bracke	ets, beam	ns and l	neat trai	nsfer problei	ns.		
5.	Calculate the natural free	quency and mode shape analy	ysis of 21	D comp	onents	and beams.			
List o	f Experiments: Note: co	onduct any TEN exercises fro	om the lis	st given	below:				
1	. Drafting: Development	of part drawings for variou	us comp	onents	in the	form of ort	hograph	ic and	isometric
	Representation of dime	nsioning and tolerances.							
2	. Part Modeling: Genera	ation of various 3D Models	throug	h Protr	usion,	revolve, sw	eep. Cr	eation of	of variou
	features. Study of pare	ent child relation. Feature ba	sed and	Boolea	in based	d modeling	and Ass	sembly]	Modeling
	Study of various standa	rd Translators. Design of sim	ple com	ponents	5.				
3	. Determination of deflec	tion and stresses in 2D and 3	D trusses	s and be	eams.				
4	. Determination of deflect components.	ctions, principal and Von-mi	ses stres	ses in j	plane st	tress, plane	strain ar	nd Axi-s	symmetric
5	. Determination of stresse	es in 3D and shell structures (at least o	one exa	mple in	each case)			
6	. Estimation of natural free	equencies and mode shapes, H	Harmonic	e respor	nse of 2	D beam.			
7	. Study state heat transfer	analysis of plane and axi-syn	mmetric	compo	nents.				
8	. Development of process	s sheets for various component	nts based	on To	oling ar	nd Machines			
0	. Development of manufa	aturing defeats and tool man	aamant		~				

10. Study of various post processors used in NC Machines.

11. Development of NC code for free form and sculptured surfaces using CAM software.

12. Machining of simple components on NC lathe and Mill by transferring NC Code / from CAM software.

EN608HS: ADVANCED COMMUNICATIONS SKILLS LAB

B.Tech. III Year II Semester										
Course Code	Category Hours/Week Credits Maximum Marks									
ENCOOLS	HEMC	L	Т	Р	С	CIA	SEE	Total		
EN608HS	HSMC	-	-	2	1	30	70	100		
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 30 Total Classes: 30										

1.INTRODUCTION:

The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication

2.OBJECTIVES:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.

3.SYLLABUS:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

- Activities on Fundamentals of Inter-personal Communication and Building Vocabulary Starting a conversation responding appropriately and relevantly using the right body language

 Role Play in different situations & Discourse Skills- using visuals Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
- 2. Activities on Reading Comprehension –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading& effective googling.
- 3. Activities on Writing Skills Structure and presentation of different types of writing *letter writing/Resume writing/ e-correspondence/Technical report writing/* planning for writing improving one's writing.
- 4. Activities on Presentation Skills Oral presentations (individual and group) through JAM sessions/seminars/<u>PPTs</u> and written presentations through posters/projects/reports/e- mails/assignments etc.
- 5 Activities on Group Discussion and Interview Skills Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4.MINIMUM REQUIREMENT:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed 2.8 GHZ
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5.SUGGESTED SOFTWARE:

The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

Text Books:

- 1. Effective Technical Communication by M Asharaf Rizvi. McGraw Hill Education (India) Pvt. Ltd. 2nd Edition
- 2. Academic Writing: A Handbook for International Students by Stephen Bailey, Routledge, 5th Edition.

- 1. Learn Correct English A Book of Grammar, Usage and Composition by Shiv K. Kumar and Hemalatha Nagarajan. Pearson 2007.
- 2. Professional Communication by Aruna Koneru, McGraw Hill Education (India) Pvt. Ltd, 2016.
- 3. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press 2009.
- 4. Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi.
- 5. English Vocabulary in Use series, Cambridge University Press 2008.
- 6. Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning.
- 7. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009.
- 8. Job Hunting by Colm Downes, Cambridge University Press 2008.
- 9. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hill 2009.

***MC107ES: ENVIRONMENTAL SCIENCE**

Understand Understand Understand Understand Understand Course Outcomes: Based on this cours ecological principle UNIT – I Ecosystems: Definition, a chains, food webs, and ea	MC 5 Tutorial Classes: Nil 5 Tutorial Classes: Nil 8 ling the importance of ecological 9 ling the impacts of development 9 ling the environmental policies and environmental regulation 9 Scope and Importance of ecosys 9 cological pyramids. Flow of energy	l balance fo al activities and regulati Il understand s which in t tem. Classif	and miti ons. d /evalua curn helps	able de igation te / de s in sus	evelopment. measures. velop techno	blogies o velopmer		
Contact Classes: 4 Course Objectives: Understand Understand Understand Course Outcomes: Based on this course ecological principle UNIT – I Ecosystems: Definition, 5 chains, food webs, and ecological	5 Tutorial Classes: Nil ling the importance of ecological ling the impacts of development ling the environmental policies a se, the Engineering graduate will es and environmental regulation	Pra l balance for al activities and regulati ll understand s which in t tem. Classif	actical C or sustain and miti ons. d /evalua urn helps	able de igation te / de s in sus	s: Nil evelopment. measures. velop techno	Tota plogies o velopmen	on the ba	es: 45
Course Objectives: • Understand • Understand • Understand • Understand Course Outcomes: Based on this course ecological principle UNIT – I Ecosystems: Definition, a chains, food webs, and ecological	ling the importance of ecological ling the impacts of development ling the environmental policies a se, the Engineering graduate will as and environmental regulation Scope and Importance of ecosys	l balance fo al activities and regulati Il understand s which in t tem. Classif	or sustain and miti ons. d /evalua ourn helps	able de igation te / de s in sus	evelopment. measures. velop techno	blogies o velopmer	on the ba	
 Understand Understand Understand Understand Course Outcomes: Based on this course ecological principle UNIT – I Ecosystems: Definition, and ecological webs, and ecol	ling the impacts of development ling the environmental policies a se, the Engineering graduate will es and environmental regulation Scope and Importance of ecosys	al activities and regulati Il understand s which in t tem. Classif	and miti ons. d /evalua curn helps	igation te / de s in sus	velop techno	ologies o velopmer		sis of
 Understand Understand Understand Course Outcomes: Based on this course ecological principle UNIT – I Ecosystems: Definition, and each of the systems, food webs, and each of the systems.	ling the impacts of development ling the environmental policies a se, the Engineering graduate will es and environmental regulation Scope and Importance of ecosys	al activities and regulati Il understand s which in t tem. Classif	and miti ons. d /evalua curn helps	igation te / de s in sus	velop techno	ologies o velopmer		sis of
 Understand Course Outcomes: Based on this course ecological principle UNIT – I Ecosystems: Definition, and ecological webs, and ecologi	ling the environmental policies are se, the Engineering graduate will as and environmental regulation Scope and Importance of ecosys	and regulati	ons. d /evalua urn helps	tte / de s in sus	velop techno	velopmen		sis of
Course Outcomes: Based on this course ecological principle UNIT – I Ecosystems: Definition, s chains, food webs, and eco	se, the Engineering graduate will as and environmental regulation Scope and Importance of ecosys	ll understand s which in t tem. Classif	d /evalua urn helps	s in sus	•	velopmen		sis of
ecological principle UNIT – I Ecosystems: Definition, a chains, food webs, and eco	es and environmental regulation	s which in t	urn helps	s in sus	•	velopmen		sis of
ecological principle UNIT – I Ecosystems: Definition, a chains, food webs, and eco	es and environmental regulation	s which in t	urn helps	s in sus	•	velopmen		sis of
UNIT – I Ecosystems: Definition, E chains, food webs, and e	Scope and Importance of ecosys	tem. Classif			stainable dev	-	nt.	
chains, food webs, and ed	• • •		fication, s					
Ecosystems: Definition, a chains, food webs, and e	• • •		fication, s					
chains, food webs, and ed	• • •		fication, s	atur sate-				
chains, food webs, and e	• • •		fication, s	aton at -				
	cological pyramids. Flow of ene	mary Diagon		structu	re, and funct	tion of a	n ecosys	tem, Fo
ecosystem value service		rgy, biogec	ochemica	l cycle	s, Bioaccum	nulation,	Biomag	nificatio
	s and carrying capacity, Field vi			•			C C	
	, and earlying expansion, riora (r							
UNIT – II								
Natural Resources: Classi	ication of Resources: Living an	d Non-Livi	ng resour	rces. w	ater resourc	es: use a	and over	utilizati
	ter, floods and droughts, Dams:		C					
-	-		-					-
	extracting and using mineral							
rowing energy needs, rer	ewable and non-renewable ener	gy sources,	use of al	lternate	e energy sou	irce, case	e studies.	•
UNIT – III								
Biodiversity and Biotic	Resources: Introduction, De	finition, g	enetic, s	pecies	and ecosys	stem div	versitv.	Value
	use, productive use, social, et	C		•	•		•	
				•			e	
ation, Hot spots of bloc	liversity. Field visit. Threats t	o biodivers	ity: habi	tat los	s, poaching	of wild	llife, ma	in-wildl
conflicts; conservation of	biodiversity: In-Situ and Ex-situ	conservati	on. Natio	onal Bio	odiversity ac	et.		
UNIT – IV								

Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. **Water pollution:** Sources and types of pollution, drinking water quality standards. **Soil Pollution:** Sources and types, Impacts of modern agriculture, degradation of soil. **Noise Pollution:** Sources and Health hazards, standards, **Solid waste:** Municipal Solid Waste management, composition and characteristics of e-Waste and its management. **Pollution control technologies:** Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Problems and Global Efforts:** Climate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol.

$\mathbf{UNIT} - \mathbf{V}$

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio- economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

Text Books:

- 1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2. Environmental Studies by R. Rajagopalan, Oxford University Press.

- 1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.

*MC108: BUSINESS ENGLISH

Course Code	Category	Hou	rs/Weel	K	Credits	Max	imum N	Marks
MC108	Core	L	Т	P	С	CIA	SEE	Total
		2	0	-	0	30	70	100
Contact Classes: 30	Tutorial Classes: Nil		ctical C				d Class	es:30
Prerequisite: Knowledge of Course Objectives:	functional English, basics in	grammar,	understa	ndıng	of LSRW sk	alls		
-	1	·· · · · · · · · · · · · · · · · · · ·	c	1 1:6		(1	. 1 6	
The course aims to illustrate t	-	ation in pro	oressiona	1 iiie a	nd emphasiz	ze the ne	ed for co	ontinuo
learning in the context of glob								
Course Outcomes: Student								
0 0 0	ectively in spoken and writter							
	ts and respond appropriately			mal sit	uations.			
	in various contexts and differ							
4. Acquire basic proficiency	in English including reading	and listening	ng comp	rehens	ion, writing	and spea	aking ski	ills to
perform effectively in person	nal and professional contexts.							
perform effectively in person UNIT – I: COMMUNICA	-							
UNIT – I: COMMUNICA Reading: Goal of Reading, G	TION eneral Strategies for Reading	Comprehe	ension, F	Preview	ving, Predic	ting, Ide	ntifying	the ma
UNIT – I: COMMUNICA Reading: Goal of Reading, G Idea, Questioning, Making In	TION eneral Strategies for Reading ferences, Visualizing	-	ension, F	Previev	ving, Predic	ting, Ide	ntifying	the ma
UNIT – I: COMMUNICA Reading: Goal of Reading, G Idea, Questioning, Making In Listening: A conversation on	TION eneral Strategies for Reading ferences, Visualizing phone, Listening to a travel an	-	ension, F	Previev	ving, Predic	ting, Ide	ntifying	the ma
UNIT – I: COMMUNICA Reading: Goal of Reading, G Idea, Questioning, Making In Listening: A conversation on Writing: Filling in an applicat	TION eneral Strategies for Reading ferences, Visualizing phone, Listening to a travel an ion form, Writing emails	-	ension, F	Previev	ving, Predic	ting, Ide	ntifying	the ma
	TION eneral Strategies for Reading ferences, Visualizing phone, Listening to a travel an ion form, Writing emails AM sessions	necdote		Previev	ving, Predic	ting, Ide	ntifying	the ma
UNIT – I: COMMUNICA Reading: Goal of Reading, G Idea, Questioning, Making In: Listening: A conversation on Writing: Filling in an applicat Speaking: Breaking the Ice, J.	TION eneral Strategies for Reading ferences, Visualizing phone, Listening to a travel an ion form, Writing emails AM sessions : Homophones, Homonyms, H	necdote		Previev	ving, Predic	ting, Ide	ntifying	the ma
UNIT – I: COMMUNICA Reading: Goal of Reading, G Idea, Questioning, Making In: Listening: A conversation on Writing: Filling in an applicat Speaking: Breaking the Ice, J Vocabulary: Word Formation UNIT – II: DEVELOPMI	TION eneral Strategies for Reading ferences, Visualizing phone, Listening to a travel ar ion form, Writing emails AM sessions : Homophones, Homonyms, H	hecdote Homograph		Previev	ving, Predic	ting, Ide	ntifying	the ma
UNIT – I: COMMUNICA Reading: Goal of Reading, G Idea, Questioning, Making In: Listening: A conversation on Writing: Filling in an applicat Speaking: Breaking the Ice, J Vocabulary: Word Formation UNIT – II: DEVELOPMI Reading: Reading between the	TION eneral Strategies for Reading ferences, Visualizing phone, Listening to a travel an ion form, Writing emails AM sessions : Homophones, Homonyms, H ENT AND TRAINING e Lines, Reading and answering	hecdote Homograph	15		ving, Predic	ting, Ide	ntifying	the ma
UNIT – I: COMMUNICA Reading: Goal of Reading, G Idea, Questioning, Making In Listening: A conversation on Writing: Filling in an applicat Speaking: Breaking the Ice, J Vocabulary: Word Formation UNIT – II: DEVELOPMI Reading: Reading between the Listening: Listening to an Inte	TION eneral Strategies for Reading ferences, Visualizing phone, Listening to a travel an ion form, Writing emails AM sessions : Homophones, Homonyms, H ENT AND TRAINING e Lines, Reading and answering erview on Radio, A conversation	hecdote Homograph	n colleag	gues	ving, Predic	ting, Ide	ntifying	the ma
UNIT – I: COMMUNICA Reading: Goal of Reading, G Idea, Questioning, Making In: Listening: A conversation on Writing: Filling in an applicat Speaking: Breaking the Ice, J. Vocabulary: Word Formation UNIT – II: DEVELOPMI Reading: Reading between the Listening: Listening to an Inte Writing: Letters- responding t	TION eneral Strategies for Reading ferences, Visualizing phone, Listening to a travel an ion form, Writing emails AM sessions : Homophones, Homonyms, H ENT AND TRAINING e Lines, Reading and answering	hecdote Homograph ng a quiz on betwee ry, letter o	n colleag	gues		ting, Ide	ntifying	the ma

UNIT – III: CORPORATE CULTURE

Reading: Reading beyond the lines, An article on the power of customers' opinions online Listening: Working in Teams, Talking about Meetings Writing: A memo asking for suggestions, Minutes of the meetings Speaking: Discussion- How to make work place more ecofriendly? Vocabulary: Technical or business vocabulary, emails and website terms

UNIT – IV: BEING PERSUASIVE

Reading: Reading for Negative Facts, The art of agreeing and disagreeing

Listening: What makes people persuasive, People negotiating a sale at a trade fair

Writing: A survey report, Completing a business report

Speaking: Things that are important when making a presentation, short presentations

Vocabulary: Cohesive Devices or Linkers, Collocations

UNIT – V: THINKING GLOBALLY

Reading: Thinking outside the box, Reading and comparing two articles, Ways of using social media

Listening: Thinking Globally, Social Media and Customers, Netiquette

Writing: Mail for a Job application

Speaking: How to use social media for your professional enhancement

Vocabulary: Avoiding Clichés, Idioms and Phrases

Reference Books:

- 1. New International Business English Updated Edition Workbook, Cambridge University Press.
- 2. Swan, M. (2016). Practical English Usage. Oxford University Press.
- 3. Kumar, S and Lata, P.(2018). Communication Skills. Oxford University Press.
- 4. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
- 5. Zinsser, William. (2001). On Writing Well. Harper Resource Book.
- 6. Hamp-Lyons, L. (2006). Study Writing. Cambridge University Press.
- 7. Exercises in Spoken English. Parts I -III. CIEFL, Hyderabad. Oxford University Press.

Web References:

- 1. www.elt.oup.com/learning resources
- 2. www.cambridgeenglishonline.org
- 3. www.eslcafe.com

- 4. www.bbc.co.uk/worldservice/learningenglish
- 5. www.manythings.org

E-Text Books:

The secret to perfecting your grammar - Bloomsbury International

*MC611EC: ARTIFICIAL INTELLIGENCE

Course Code	Category	Hou	rs/Wee	k	Credits	Max	imum N	Marks
MC611EC	МС	L	Т	P	С	CIA	SEE	Total
MCOILE		3	0	-	0	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Pra	ctical (Classe	s: Nil	Tota	l Class	es: 45
Course Objectives: To train	the students to understand dif	ferent type	s of AI a	gents,	various AI s	earch al	gorithms	,
fundamentals of knowledge rep	resentation, building of simpl	e knowled	lge-based	l syste	ms and to ap	ply kno	wledge	
representation, reasoning. Study	y of Markov Models enable th	ne student i	ready to	step in	to applied A	J.		
			-					
UNIT – I								
- /		a	C A					, a
Introduction: AI problems, A	c		Ū.			0 0		
Strategies: Problem Spaces, U		-			•			eepening
Heuristic Search (Hill Climbing	g, Generic Best-First, A*), Cor	straint Sat	tisfactior	ı (Bacl	tracking, Lo	ocal Sea	ch)	
UNIT – II								
UNII - II								
Advanced Search: Construct	ting Search Trees, Stochastic	Search, A	A* Searc	h Imp	lementation	. Minim	ax Searc	h, Alph
Advanced Search: Construct Beta Pruning	ting Search Trees, Stochastic	search, A	A* Searc	ch Imp	lementation	, Minim	ax Searc	h, Alph
Beta Pruning	-			-				-
	tion and Reasoning: Proposit	ional Logi		-				-
Beta Pruning Basic Knowledge Representat	tion and Reasoning: Proposit	ional Logi		-				-
Beta Pruning Basic Knowledge Representat	tion and Reasoning: Proposit	ional Logi		-				-
Beta Pruning Basic Knowledge Representat Chaining, Introduction to Probab UNIT – III	tion and Reasoning: Proposit ilistic Reasoning, Bayes Theorer	ional Logi n.	c, First-C	Order I	.ogic, Forwa	rd Chair	iing and	Backwa
Beta Pruning Basic Knowledge Representat Chaining, Introduction to Probab UNIT – III Advanced Knowledge Repres	tion and Reasoning: Proposit ilistic Reasoning, Bayes Theorer sentation and Reasoning: F	ional Logi n.	c, First-C	Order I	.ogic, Forwa	rd Chair	iing and	Backwa
Beta Pruning Basic Knowledge Representat Chaining, Introduction to Probab UNIT – III Advanced Knowledge Representation	tion and Reasoning: Proposit ilistic Reasoning, Bayes Theorer sentation and Reasoning: F on Schemes	ional Logi n. Knowledge	c, First-C	Drder I	logic, Forwa	rd Chair	otonic R	Backwa
Beta Pruning Basic Knowledge Representat Chaining, Introduction to Probab UNIT – III Advanced Knowledge Representation Other Knowledge Representation Reasoning Under Uncertainty	tion and Reasoning: Proposit ilistic Reasoning, Bayes Theorem sentation and Reasoning: R on Schemes y: Basic probability, Acting U	ional Logi n. Knowledge	c, First-C	Drder I	logic, Forwa	rd Chair	otonic R	Backwa
Beta Pruning Basic Knowledge Representat Chaining, Introduction to Probab	tion and Reasoning: Proposit ilistic Reasoning, Bayes Theorem sentation and Reasoning: R on Schemes y: Basic probability, Acting U	ional Logi n. Knowledge	c, First-C	Drder I	logic, Forwa	rd Chair	otonic R	Backwar
Beta Pruning Basic Knowledge Representat Chaining, Introduction to Probab UNIT – III Advanced Knowledge Representation Other Knowledge Representation Reasoning Under Uncertainty	tion and Reasoning: Proposit ilistic Reasoning, Bayes Theorem sentation and Reasoning: R on Schemes y: Basic probability, Acting U	ional Logi n. Knowledge	c, First-C	Drder I	logic, Forwa	rd Chair	otonic R	Backwa
Beta Pruning Basic Knowledge Representat Chaining, Introduction to Probab UNIT – III Advanced Knowledge Representation Other Knowledge Representation Reasoning Under Uncertainty	tion and Reasoning: Proposit ilistic Reasoning, Bayes Theorem sentation and Reasoning: R on Schemes y: Basic probability, Acting U	ional Logi n. Knowledge	c, First-C	Drder I	logic, Forwa	rd Chair	otonic R	Backwar
Beta Pruning Basic Knowledge Representat Chaining, Introduction to Probab UNIT – III Advanced Knowledge Representation Other Knowledge Representation Reasoning Under Uncertainty Uncertain Domain, Bayesian N	tion and Reasoning: Proposit ilistic Reasoning, Bayes Theorem sentation and Reasoning: R on Schemes y: Basic probability, Acting U retworks.	ional Logion. Manager (1997) Knowledge Under Unc	c, First-C	Prder I entatio Bayes	n Issues, No	rd Chair	otonic R	Backwa Reasonin edge in a

UNIT – V

Expert Systems: Representing and Using Domain Knowledge, Shell, Explanation, Knowledge Acquisition.

Text Books:

1. Russell, S. and Norvig, P, Artificial Intelligence: A Modern Approach, Third Edition, Prentice- Hall, 2010.

Reference Books:

- Artificial Intelligence, Elaine Rich, Kevin Knight, Shivasankar B. Nair, The McGraw Hill publications, Third Edition, 2009.
- George F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Pearson Education, 6th ed., 2009.

Web References:

https://nptel.ac.in/courses/106/102/106102220/

E-Text Books:

https://cse.iitkgp.ac.in/~pallab/ai.slides/lec1.pdf https://www.cet.edu.in/noticefiles/271_AI%20Lect%20Notes.pdf

ME701PC: REFRIGERATION & AIR CONDITIONING

Course Code	Category	Hou	rs/Weel	K	Credits	Max	imum 1	Marks
ME701PC	Core	L	Т	P	C	CIA	SEE	Tota
WIE/UII C	Core	3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pra	ctical C	Classe	s: Nil		l Class	
Prerequisite: Thermodynamic	CS							
Course Objectives:								
1. Learning the fundame	ntal principles and different i	nethods of	refrigera	ation a	nd air condi	tioning.		
 Study of various refr property tables. 	igeration cycles and evalua	te perform	nance us	ing M	Iollier charts	s and/ o	r refrig	erant
	different refrigerants with re-	spect to pro	operties.	applic	ations and e	nvironm	ental iss	ues.
· ·	air conditioning processes		•	••				
	t and industrial air condition				,			
**	quipment-operating principle	0	no and sa	ifety c	ontrols empl	loved in	refriger	ation
air conditioning syster		es, operatin	ig und so	nety e	ontrois emp	loyed in	renngen	ution
		t abould be	abla					
Course Outcomes: At the								
	een different types of refriger	•	ms.					
	is of Conventional Refrigera	-						
-	ous components of Refrigera	-						
-	y analyse refrigeration and a				-		-	
5. To Apply the principle	es of Psychometrics to design	the air cor	ditioning	g load	s for the indu	ustrial ap	plicatio	ns.
UNIT – I								
Introduction to Refrigeration	ion: - Necessity and appli	ications –	Unit of	f refri	igeration an	d C.O.I	P. – M	echanic
Refrigeration – Types of Ideal	cycle of refrigeration.							
Air Refrigeration: Bell Coler	nan cycle and Brayton Cycle	e, Open and	l Dense a	air sys	tems – Actu	al air ref	rigeratio	on syste
- Refrigeration needs of Air of	craft's- Air systems – Applie	cation of A	ir Refrig	geratio	on, Justificat	ion – Ty	pes of s	systems
Problems.								
UNIT – II								
Vapour compression refriger	cation – working principle	and esser	ntial con	npone	nts of the	plant –	Simple	e Vapo
compression refrigeration cycl	le – COP – Representation of	f cycle on '	T-S and	p-h ch	arts – effect	of sub o	cooling	and sup
neating – cycle analysis – Ac	ctual cycle Influence of vari	ous param	eters on	syster	n performan	ice – Us	e of p-h	charts
Problems.								

$\mathbf{UNIT} - \mathbf{III}$

System Components: Compressors – General classification – comparison – Advantages and Disadvantages. Condensers – classification – Working Principles. Expansion devices – Types – Working Principles. Refrigerants – Desirable properties – common refrigerants used – Nomenclature – Ozone Depletion – Global Warming – Azeotropes and Zeotropes.

UNIT – IV

Vapor Absorption System - Calculation of max COP - description and working of NH3 - water system

-Li – Br system. Principle of operation Three Fluid absorption system, salient features. Steam Jet Refrigeration System Working Principle and Basic Components

Principle and operation of (i) Thermoelectric refrigerator (ii) Vortex tube or Hilsch tube.

 $\mathbf{UNIT} - \mathbf{V}$

Introduction to Air Conditioning: Psychometric Properties & Processes – Sensible and latent heat loads – Characterization – Need for Ventilation, Consideration of Infiltration – Load concepts of RSHF, ASHF, ESHF and ADP. Concept of human comfort and effective temperature –Comfort Air conditioning – Industrial air conditioning and Requirements – Air conditioning Load Calculations.

Air Conditioning systems - Classification of equipment, cooling, heating humidification and dehumidification, filters, grills and registers, deodorants, fans and blowers.

Heat Pump – Heat sources – different heat pump circuits – Applications.

Text Books:

- 1. Refrigeration and Air conditioning / CP Arora / Mc Graw Hill.
- 2. Refrigeration and Air-Conditioning / RC Aora / PHI.

- 1. Principles of Refrigeration Dossat / Pearson.
- 2. Basic Refrigeration and Air-Conditioning / Ananthanarayanan / Mc Graw Hill.

ME711PE: ADDITIVE MANUFACTURING (PE - II)

Course Code	Category	Ηοι	ırs/Wee	k	Credits	Max	imum I	Marks
ME711PE	Core	Core L T P		P	С	CIA	SEE	Tota
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15		actical (Classe	s: Nil	Tota	l Class	es: 60
Prerequisite: Manufacturing F	Processes, Engineering Ma	aterials						
Course Objectives:								
1. To understand the fund	amental concepts of Addit	ive Manufac	turing (i.	e. Rapi	id Prototypin	g) and 3	-D printi	ing, its
advantages and limitat	ions.							
2. To classify various type	es of Additive Manufacturi	ing Processe	s and kno	w thei	r working pr	inciple, a	advantag	ges,
limitations etc.								
3. To have a holistic view	of various applications of	f these techn	ologies i	n relev	ant fields su	ch as me	chanica	l, Bio-
medical, Aerospace, el	ectronics etc.							
4. Apply various liquid an	nd solid based RPT system	ns.						
5. Recognize various STI	formats and slicing meth	ods and tess	ellation.					
Course Outcomes:								
1. Describe various CAD	issues for 3D printing and	d rapid proto	typing aı	nd rela	ted operation	ns for ST	L mode	l
manipulation.								
2. Formulate and solve ty	pical problems on reverse	engineering	for surfa	ace rec	onstruction f	from phy	vsical pro	ototype
models through digitiz	ing and spline-based surfa	ce fitting.						
3. Formulate and solve ty	pical problems on reverse	engineering	for surfa	ace rec	onstruction f	rom dig	itized m	esh
models through topolo	gical modelling and subdi	vision surfac	e fitting.					
4. Explain and summarized	e the principles and key ch	naracteristics	of additi	ive ma	nufacturing	echnolo	gies and	
commonly used 3D pri	inting and additive manufa	acturing syst	ems.					
5. Explain and summarize	e typical rapid tooling proc	esses for qui	ck batch	produ	ction of plast	ic and m	etal part	s.
-				-	*		•	
UNIT – I								

Limitations of Rapid Prototyping, Commonly used Terms, Classification of RP process, Rapid Prototyping Process Chain: Fundamental Automated Processes.

UNIT – II

Liquid-based Rapid Prototyping Systems: Stereo lithography Apparatus (SLA): Models and specifications, Process, working principle, photopolymers, photo polymerization, Layering technology, laser and laser scanning, Applications, Advantages and Disadvantages, Case studies. Solid ground curing (SGC): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies Solid-based Rapid Prototyping Systems: Laminated Object Manufacturing (LOM): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies, Process, working principle, Applications, Advantages and Specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies, Process, working principle, Applications, Process, working principle, Applications, Advantages, Case studies, Process, Working principle, Applications, Process, Working Process, Working Principle, Applications, Process, Working Principle, Principle, Applications, Process, Prin

UNIT – III

Powder Based Rapid Prototyping Systems: Selective laser sintering (SLS): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Three dimensional Printing (3DP): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Rapid Tooling: Introduction to Rapid Tooling (RT), Conventional Tooling Vs RT, Need for RT. Rapid Tooling Classification; Indirect Rapid Tooling Methods: Spray Metal Deposition, RTV Epoxy Tools, Ceramic tools, Investment Casting, Spin Casting, Die casting, Sand Casting, 3D Keltool process. Direct Rapid Tooling: Direct AIM, LOM Tools, DTM Rapid Tool Process, EOS Direct Tool Process and Direct Metal Tooling using 3DP

$\mathbf{UNIT} - \mathbf{IV}$

Rapid Prototyping Data Formats: STL Format, STL File Problems, Consequence of Building Valid and Invalid Tessellated Models, STL file Repairs: Generic Solution, Other Translators, Newly Proposed Formats. Rapid Prototyping Software's: Features of various RP software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor.

UNIT – V

RP Applications: Application - Material Relationship, Application in Design, Application in Engineering, Analysis and Planning, Aerospace Industry, Automotive Industry, Jewelry Industry, Coin Industry, GIS application, Arts and Architecture. RP Medical and Bioengineering Applications: Planning and simulation of complex surgery, Customized Implants & Prosthesis, Design and Production of Medical Devices, Forensic Science and Anthropology, Visualization of Biomolecules.

Text Books:

1. Rapid prototyping; Principles and Applications /Chua C.K., Leong K.F. and LIM C.S/World Scientific Publications.

2.Rapid Manufacturing /D.T. Pham and S.S. Dimov/Springer.

- 1. Terry Wohlers, Wholers Report 2000, Wohlers Associates.
- 2. Rapid Prototyping and Manufacturing /PaulF.Jacobs/ASME.

ME712PE: AUTOMATION IN MANUFACTURING (PE - II)

Course Code	Category	Hou	rs/Wee	k	Credits	Max	imum I	Marks
ME712PE/MT821PE	Core	L	Т	Р	С	CIA	SEE	Tota
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pra	actical (Classe	s: Nil	Tota	l Class	es: 60
Course Objectives:								
	tomation and types of Autom			stries.				
	erent Automated flow lines in					_		
-	re processing and/or assembly	-		-		-		
	nce of automated or mecha		sembly	operat	ions Flexibl	e manu	facturing	g syste
	mated machine cell that produ	•						
5. To know product famil	lies often consists of worksta	tions com	prising C	CNC m	achine tools	•		
Course Outcomes:								
1. Students will understand	nd the process of automation	and types						
2. Students will get expos	sure to workstation, which rel	fers to the	location	in the	factory whe	re some	well-def	fined
task or operation is ac	ccomplished by an automated	machine						
3. Worker-and-machine c	combination or a worker using	g hand to	ols.					
4. Understand the Autom	ated Material handling equip	ments and	l types.					
5. Student gets exposure	on portable power tools.							
UNIT – I								
Introduction: Types and strate ools. Mechanical feeding and UNIT - II		-		-		s, Auton	nation in	machi
Automated flow lines: Metho	ods or work part transport tra	nsfer Me	chanical	buffe	r storage cor	ntrol fun	ction, de	esign a
abrication consideration.								
Analysis of Automated flow	lines: General terminology a	nd analy	sis of tra	nsfer l	ines without	and wit	th buffer	storag
partial automation, implementa	ation of automated flow lines.							

improving line balance, flexible assembly lines.

UNIT - IV:

Automated material handling: Types of equipment, functions, analysis and design of material handling systems conveyor systems, automated guided vehicle systems.

Automated storage systems, Automated storage and retrieval systems; work in process storage, interfacing handling and storage with manufacturing.

UNIT – V

Fundamentals of Industrial controls: Review of control theory, logic controls, sensors and actuators, Data communication and LAN in Manufacturing.

Business process Re-engineering: Introduction to BPE logistics, ERP, Software configuration of BPE.

Text Books:

1. Automation, Production Systems and Computer Integrated Manufacturing: M.P. Groover 3e./PE/PHI, 2009.

Reference Books:

1. Computer Aided Manufacturing, Tien-Chien Chang, Richard A. Wysk and Hsu-Pin Wang, Pearson, 2009.

2. Automation by W. Buekinsham.

ME713PE: MEMS (PE – II)

	Category	nou	rs/Weel	K	Credits Maximum M			Marks
ME713PE	Core	L	Т	P	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pra	ctical C	lasse	s: Nil	Tota	l Class	es: 60
rerequisite: Fluid Mechanics	8							
course Objectives: At the er	nd of this course the student	will be able	e to					
6	e of semiconductors and soli onts of Micro fabrication tech		cs to fab	oricate	MEMS devi	ces.		
	d the various sensors and act	•						
4. Different materials use	d for MEMS.							
5. Applications of MEMS	s to disciplines beyond Electr	rical and M	lechanic	al eng	ineering.			

valves, pumps, and fluidics used in Microsystems.

- 1. Students will be able to apply scaling laws that are used extensively in the conceptual design of micro devices and systems. Students will be able to differentiate between the positive and negative consequences of scaling down certain physical quantities that are pertinent to Microsystems.
 - 2. Students will be able to use materials for common micro components and devices.
 - 3. Students will be able to choose a micromachining technique, such as bulk micromachining and surface micromachining for a specific MEMS fabrication process.
- 4. Students will be able to understand the basic principles and applications of micro-fabrication processes, such as photolithography, ion implantation, diffusion, oxidation, CVD, PVD, and etching.
- 5. Students will be able to consider recent advancements in the field of MEMS and devices.
- 6. Students will be able communicate their results and findings orally via formal presentations and in writing through reports.

UNIT – I

Introduction to MEMS and Micro fabrication: MEMS Roadmap MEMS markets-MEMS foundries- Benefits of Miniaturization -Benefits of Scaling. Micro fabrication: Basic Fabrication Processes – oxidation -film deposition lithography–etching-ion implantation – diffusion.

UNIT - II:

Surface Micromachining and Bulk Micromachining: Surface Micromachining: Basic process flow– release–stictionmaterial choices-residual stress-Electroplating. Bulk Micromachining: LIGA-Wet Etch- based-dissolved wafer process-SOI MEMS–Scream–MEMS–RIE–DRIE.

UNIT – III

Mechanics of MEMS Materials: Stress–strain-material properties-measurement & characterization of mechanical parameters. Microstructural Elements: bending moment and strain-flexural rigidity- residual stress boundary conditions-spring combinations.

UNIT – IV

MEMS Devices: Pressure sensors-Accelerometers-Gyroscopes-RF MEMS Switch-Temperature sensors Humidity sensors. Micro actuators: Electrostatic-piezoelectric-SMA-Thermoelectric- electromagnetic.

UNIT – V

Fluid Dynamics and Micro pumps: Viscosity–density-surface tension-continuity equation-Newton's second law-Navier-Stokes equation and its interpretation-flow types.

Micro fluidics: Electro kinetics electro osmosis–electrophoresis-fabrication methods-Lab ona Chip–micropumpsmicrovalves.

Text Books:

- 1. MEMS & Microsystems Design and Manufacture/ Tai-Ran Hsu/ Tata Mc Graw Hill.
- 2. Microelectromechanical Systems / Bhattacharyya / Cengage.

- 1. Foundations of MEMS /Chang Liu / Pearson.
- 2. MEMS/ Mahalik/ Mc Graw Hill.
- 3. MEMS and MOEMS Technology and Applications/ PHI.
- 4. Microsystems Design/ Stephen D. Senturia /Springer.
- 5. Introductory MEMS Fabrication and Applications/ Thomas M. Adams and Richard A Layton/ Springer.
- 6. Microelectronic Devices/ Dipankar Nagchaudhuri/ Pearson Education Asia.

ME721PE: POWER PLANT ENGINEERING (PE – III)

Course Code	Category	Hou	rs/Weel	k	Credits	Max	imum I	Marks
ME721PE	Core	L	Т	P	C	CIA	SEE	Tota
	Core	3		-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pra	actical C	Classe	s: Nil		al Class	
rerequisite: None								
Course Objectives: The goa	l of this course is to become	prepared f	for profes	sional	lengineering	g design	of conve	entional
nd alternative power-generation	on plants. The learning objec	tives inclu	ıde					
1. Basic knowledge of Di	ifferent types of Power Plants	s, site sele	ction crit	eria of	f each one of	them.		
2. Understanding of Ther	mal Power Plant Operation,	turbine go	verning,	differ	ent types of l	high-pre	ssure bo	ilers
including supercritica	ll and supercharged boilers, H	Fluidized b	oed comb	ustion	systems.			
3. Design of chimney in t	hermal power plants, knowle	edge of co	oling tow	er op	eration, num	erical or	surface	
condenser design.								
4. Basic knowledge of Di	ifferent types of nuclear powe	er plants i	ncluding	Pressu	urized water	reactor,	Boiling	water
reactor, gas cooled re-	actor, liquid metal fast breed	er reactor.						
5. Understanding of Powe	er Plant Economics, Energy	Storage in	cluding c	compre	essed air ene	rgy and	pumped	hydro
etc.								
6. Discussing environment	ntal and safety aspects of pow	ver plant o	operation					
Course Outcomes: At the en	nd of the course students are	able to:						
1. Understand the concep	t of Rankine cycle.							
2. Understand working of	f boilers including water tube	, fire tube	and high	n press	ure boilers a	nd deter	mine	
efficiencies.								
3. Analyze the flow of ste	eam through nozzles.							
4. Evaluate the performan	nce of condensers and steam	turbines.						
5. Evaluate the performan	nce of gas turbines.							
UNIT – I								
		-1	- f D	т	1.			
ntroduction to the Sources of I		-					C	1
team Power Plant: Plant La				nand	ling equipm	ents, typ	bes of co	bals, co
andling, choice of handling ec		0	-		1. (. 1	1	. 1
Combustion Process: Propert							-	
etort stokers, pulverized fuel b		mente coi	mnustion	needs	and draugh	r system	cyclone	e turnac

UNIT – II

Internal Combustion Engine Plant: Diesel Power Plant: Introduction – IC Engines, types, construction– Plant layout with auxiliaries – fuel supply system, air starting equipment, lubrication and cooling system – super charging. Gas Turbine Plant: Introduction – classification - construction – Layout with auxiliaries – Principles of working of closed and open cycle gas turbines. Combined Cycle Power Plants and comparison.

UNIT – III

Hydro Electric Power Plant: Water power – Hydrological cycle / flow measurement – drainage area characteristics – Hydrographs – storage and Pondage – classification of dams and spill ways.

Hydro Projects and Plant: Classification – Typical layouts – plant auxiliaries – plant operation pumped storage plants.

UNIT - IV

Nuclear Power Station: Nuclear fuel – breeding and fertile materials – Nuclear reactor – reactor operation. Types of Reactors: Pressurized water reactor, Boiling water reactor, sodium-graphite reactor, fast Breeder Reactor, Homogeneous Reactor, Gas cooled Reactor, Radiation hazards and shielding – radioactive waste disposal.

UNIT – V

Power Plant Economics and Environmental Considerations: Capital cost, investment of fixed charges, operating costs, general arrangement of power distribution, Load curves, load duration curve. Definitions of connected load, Maximum demand, demand factor, average load, load factor, diversity factor – related exercises. Effluents from power plants and Impact on environment – pollutants and pollution standards – Methods of Pollution control.

Text Books:

- 1. Power Plant Engineering/ P. K. Nag / Mc Graw Hill.
- 2. Power Plant Engineering / Hegde / Pearson.

- 1. Power Plant Engineering / Gupta / PHI.
- 2. Power Plant Engineering / A K Raja / New age.

MT701PC/ME722PE: AUTOMOBILE ENGINEERING (PE - III)

Course Code		Category	Hou	rs/Wee	k	Credits	Max	imum I	Marks
MT701PC/ME722	PE	Core	L	Т	Р	С	CIA	SEE	Tota
	47		3	-	-	3	30	70	100
Contact Classes: Course Objectives:	45	Tutorial Classes: 15	Pra	actical (lasse	S: INII	1018	al Class	es: 00
-	the aut	omobile in general.							
 The anatomy of The location and 		-							
	-	engine and its accessories, g	ear hox	lutch hr	akes s	teering axle	es and w	heels	
-		ngs, and other connections.		nuten, on	urco, o	teering, axie	s, and w	neers.	
		ntrols, electrical systems and		on					
Course Outcomes:				011.					
	fforont	parts of the automobile							
-		parts of the automobile. of various parts like engine	transmis	aion clut	oh hr	kos			
-	-					IKES.			
		ering and the suspension sy conmental implications of au	-						
		-				nchilo indua	++++		
UNIT – I	ong bas	e for understanding future of	levelopine			noone maus	uy.		
Introduction: Layout o	autom	obile – introduction chassis	and body	compon	ents. T	ypes of Aut	omobile	engines.	- Powe
unit – Introduction to en	gine lul	brication – engine servicing		_				-	
Fuel System: S.I. Engi	e: Fuel	l supply systems, Mechanic	al and ele	ectrical fu	iel pui	np – filters	– carbur	etor – ty	vpes – a
ilters – petrol injection.	Introdu	action to MPFI and GDI Sys	stems.		-	-			-
C.I. Engines: Requirem	ents of	diesel injection systems, ty	pes of inj	ection sy	stems,	DI Systems	IDI sys	tems. Fu	el pum
		on timing, testing of fuel pu							
UNIT – II									
Cooling System, Cooli		uirements, Air Cooling, Lic	uid Cooli	ng Thor	mow	ator and For	and Circ	ulation	System
		in - water pump, thermostat	_	-		ater and Por		ulation	System
oressure sealed cooling	U U		, evaporat		ug				
C			mition are	atom acr	noton of	ional facture	o of ctor	ana hat	0777 01-
•		in ignition system, battery ig	•					0	•
ransformer, contact bre	iker po	ints, condenser, and spark p	nug – Ma	gneto coi	ii ignit	ion system,	electron	ic ignitio	n syste

using contact breaker, electronic ignition using contact triggers – spark advance and retard mechanism.

Electrical System: Charging circuit, generator, current – voltage regulator – starting system, bendix drive mechanism solenoid switch, lighting systems, Horn, wiper, fuel gauge – oil pressure gauge, engine temperature indicator etc.

UNIT – III

Transmission System: Clutches, principle, types, cone clutch, single plate clutch, multi plate clutch, magnetic and centrifugal clutches, fluid fly wheel – gear boxes, types, sliding mesh, constant mesh, synchro mesh gear boxes, epicyclic gear box, over drive torque converter. Propeller shaft – Hotch – Kiss drive, Torque tube drive, universal joint, differential rear axles – types – wheels and tyres.

Suspension System: Objects of suspension systems – rigid axle suspension system, torsion bar, shock absorber, independent suspension system.

UNIT - IV

Braking System: Mechanical brake system, Hydraulic brake system, Master cylinder, wheel cylinder tandem master cylinder Requirement of brake fluid, Pneumatic and vacuum brakes.

Steering System: Steering geometry – camber, castor, king pin rake, combined angle toein, center point steering. Types of steering mechanism – Ackerman steering mechanism, Davis steering mechanism, steering gears – types, steering linkages.

$\mathbf{UNIT} - \mathbf{V}$

Emissions from Automobiles – Pollution standards National and international – Pollution Control – Techniques -Multipoint fuel injection for SI Engines. Common rail diesel injection Energy alternatives

Solar, Photo-voltaic, hydrogen, Biomass, alcohols, LPG, CNG, liquid Fuels, and gaseous fuels, Hydrogen as a fuel for IC Engines. - Their merits and demerits. Standard Vehicle maintenance practice.

Text Books:

- 1. Automobile Engineering / William H Crouse.
- 2. A Text Book Automobile Engineering-Manzoor, Nawazish Mehdi & Yosuf Ali, Frontline Publications.

- 1. A Text Book of Automobile Engineering by R K Rajput. Laxmi Publications.
- 2. Automotive Mechanics / Heitner.
- 3. Automotive Engineering / Newton Steeds & Garrett.
- 4. Automotive Engines / Srinivasan.
- 5. A Text Book of Automobile Engineering By Khalil U Siddiqui New Age International.

ME723PE: RENEWABLE ENERGY SOURCES (PE – III)

Course Code ME723PE	Category Core	Hours/Week			Credits	Maximum Marks			
		L	Т	P	С	CIA	SEE	Tota	
		3	-	-	3	30	70	100	
Contact Classes: 45	Tutorial Classes: 15	Pr	actical (Classe	s: Nil	Tota	Total Classes: 60		
Course Objectives:									
1. To explain the concep	ts of Non-renewable and rene	wable en	ergy syste	ems.					
2. To outline utilization of	of renewable energy sources f	or both do	omestic a	nd ind	ustrial applic	ations.			
3. To analyse the environ	mental and cost economics of	f renewab	le energy	sourc	es in compar	ison wit	h fossil f	fuels.	
4. At the end of the cour	rse, the students are expected	to identif	y the new	v meth	odologies /	technolo	gies for	effecti	
utilization of renewal	ble energy.								
5. Understanding workin	g principles and concepts of	different 1	renewable	e energ	gy technolog	ies.			
Course Outcomes:									
1. Understanding of rene	wable energy sources.								
2. Knowledge of working	g principle of various energy	systems.							
3. Capability to carry out	t basic design of renewable er	nergy syst	ems.						
4. To understand the con	cept of energy Conservation.								
5. To get the utilization of	of Biogas plants and geothern	hal energy	7.						
-									
UNIT – I									
Global and National Energy	Scenario: Over view of conv	entional &	& renewal	ble ene	ergy sources.	need &	develor	ment o	
enewable energy sources, typ									
Renewable and Non-renewab									
ources, renewable electricity				•					
•	and key elements, Olobar el		inge, co.	2 1000	ction potenti		lewable	energy	
concept of Hybrid systems.									
UNIT – II									

applications of solar energy systems.

UNIT – III

Wind Energy: Wind Energy Conversion, Potential, Wind energy potential measurement, Site selection, Types of wind turbines, Wind farms, wind Generation and Control. Nature of the wind, power in the wind, factors influencing wind, wind data and energy estimation, wind speed monitoring, classification of wind, characteristics, applications of wind turbines, offshore wind energy – Hybrid systems, wind resource assessment, Betz limit, site selection, wind energy conversion devices. Wind mill component design, economics and demand side management, energy wheeling, and energy banking concepts. Safety and environmental aspects, wind energy potential and installation in India.

UNIT - IV

Biogas: Properties of biogas (Calorific value and composition), biogas plant technology and status, Bio energy system, design and constructional features. Biomass resources and their classification, Biomass conversion processes, Thermo chemical conversion, direct combustion, biomass gasification, pyrolysis and liquefaction, biochemical conversion, anaerobic digestion, types of biogas Plants, applications, alcohol production from biomass, bio diesel production, Urban waste to energy conversion, Biomass energy programme in India.

$\mathbf{UNIT}-\mathbf{V}$

Ocean Energy: Ocean wave energy conversion, principle of Ocean Thermal Energy Conversion (OTEC), ocean thermal power plants, tidal energy conversion, Tidal and wave energy its scope and development, Scheme of development of tidal energy.

1.Small hydro Power Plant: Importance of small hydro power plants and their Elements, types of turbines for small hydro, estimation of primary and secondary power.

2.Geothermal Energy: Geothermal power plants, various types, hot springs and steam ejection.

Text Books:

- 1. Renewable Energy Sources / Twidell, J.W. and Weir, A./ EFN Spon Ltd., 1986.
- 2. Non-Conventional Energy Sources / G.D Rai/ Khanna Publishers.

- 1. Kishore VVN, Renewable Energy Engineering and Technology, Teri Press, New Delhi, 2012.
- 2. Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, Oxford University Press, U.K, 1996.

ME731PE: COMPUTATIONAL FLUID DYNAMICS (PE – IV)

B.Tech.IV. Year I Semeste	er				•	•		
Course Code	Category	Hours/Week			Credits	Maximum Marks		
ME731PE	Core	L	Т	P	C	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45 Prerequisite: Heat Transfer a	Tutorial Classes: 15	5 Practical Classes: Nil Total Classes: 6						es: 60
Course Objective:								
Ū		* 1 • .	C 1					1
	of Heat Transfer and Fluid M			ate go	verning equa	tions for	r physica	al
*	those using different numer		•		_	_	_	_
-	creating and exploring a me	-			-		-	÷
3. To learn how to set suit	table boundary conditions an	nd numeric	al model	ls usin	g any availa	ble CFD	softwar	e
packages.								
4. To explore the post-pro	ocessing facilities of the CFI	Code to e	xplore th	ne resu	lts.			
5. To assess the computat	ional results against the pub	lished expe	erimental	l and r	numerical da	ta.		
Course Outcomes: At the en	d of the course, the student	should be a	ble to:					
1. Differentiate between	different types of Partial D	ifferential	Equation	ns and	to know an	d under	stand ap	propriate
numerical techniques.								
2. Solve the simple heat the	ransfer and fluid flow proble	ems using c	lifferent	numer	rical techniq	ues, viz.	, FDM.	
3. Understand and to appr	eciate the need for validatio	n of numer	rical solu	tion.				
4. Understand transition	from laminar to turbulent	flow, effe	ct of tur	bulen	ce on time	average	d Navie	r Stokes
equations.								
5. Understand and apply	mixing length model, the k-	-e model, F	Reynolds	stress	equation m	odel and	l Algebr	aic stress
equation models.			5		1		U	
UNIT – I								
Basic Aspects of the Governing	g Equations – Physical Bou	ndary Con	litions –	Meth	ods of soluti	ons of P	hysical	Problems
– Need for Computational Flu		-					-	
working principle - CFD as a re	·			•				, iviain
Mathematical behavior of Parti	C 1	•			C C	Ū.		aar PDF
– Examples - Physical Proces	•	Ū.	•				•	
	-	-						
Behavior - General characteris	-			•		cai aspe		IC FDE -
One way and Two way variable				-		• .•		
Solution of Simultaneous Algel	oraic Equations: Direct Metl	nod – Gaus	s Elimin	ation -	– LU Decom	position	l	

Pivoting – Treatment of Banded Matrices – Thomas Algorithm Iterative Method: Gauss Seidel and Jordan Methods - Stability Criterion.

UNIT – II

Finite Difference Method: Basic aspects of Discretization – Finite Difference formulae for first order and second order terms – Solution of physical problems with Elliptic type of Governing Equations for different boundary conditions -Numerical treatment of 1D and 2D problems in heat conduction, beams etc., - Solutions –Treatment of Curvelinear coordinates – Singularities – Finite Difference Discretization-Solution of 1D heat conduction problems in Heat conduction in curve linear coordinates.

UNIT – III

FDM: Solution of physical problems with Parabolic type of Governing Equations – Initial Condition – Explicit, implicit and semi implicit methods – Types of errors – Stability and Consistency – Von Neumann Stability criterion– Solution of simple physical problems in 1D and 2D – Transient Heat conduction problems- ADI scheme - Simple Hyperbolic type PDE - First order and Second order wave equations – Discretization using Explicit method - Stability criterion – Courant Number – CFL Condition - Its significance - Treatment of simple problems.

UNIT – IV

Finite Difference Solution of Unsteady Inviscid Flows: Lax – Wendroff Technique – Disadvantages – Maccormack's Technique

Fluid Flow Equations – Finite Difference Solutions of 2D Viscous Incompressible flow problems – Vorticity and Stream Function Formulation – Finite Difference treatment of Lid Driven Cavity Problem - Application to Cylindrical Coordinates with example of flow over infinitely long cylinder and sphere – Obtaining Elliptic Equations.

$\mathbf{UNIT} - \mathbf{V}$

Finite Difference Applications in Fluid flow problems: Fundamentals of fluid Flow modeling using Burger's Equation – Discretization using FTCS method with respect to Upwind Scheme and Transport Property – Upwind Scheme and Artificial Viscosity

Solutions of Navier Stokes Equations for Incompressible Fluid Flows: Staggered Grid – Marker and Cell (MAC) Formulation – Numerical Stability Considerations – Pressure correction method - SIMPLE Algorithm.

Text Books:

- 1. Computational Fluid Dynamics: The basics with applications/ John D Anderson/McGraw Hill Publications.
- 2. Numerical Heat Transfer and Fluid Flow/ S.V. Patankar/ Mc Graw Hill.

- 1. Computational Fluid Flow and Heat Transfer / K Muralidharan and T Sudarajan/ Narosa Publishers.
- 2. Computational Methods for Fluid Dynamics / Firziger & Peric/ Springer.

ME732PE: TURBO MACHINERY (PE – IV)

Course Code ME732PE	Category Core Tutorial Classes: 15	Hours/Week			Credits	Maximum Marks		
			Т	Р	C	CIA	SEE	Tota
Contact Classes: 45		3 Pra	 actical (- Classe	3 s: Nil	30 Tota	70 Il Class	100 es: 60
Prerequisite: Thermal Engine								
Course Objectives:								
1. Provide students w	vith opportunities to apply ba	sic flow eq	uations.					
2. Train the students	to acquire the knowledge and	l skill of ar	nalyzing	differe	ent turbo mac	chines.		
3. How to compare a	nd chose machines for variou	s operation	ns.					
4. Define Turbomach	nine & Identify the main par	ts of turbo	machin	es, Cla	ssify turbo	machine	s. and co	ompare
with positive displ	acement machines.							
5. Discuss the effec	t of Reynolds number, spe	cific spee	ed & dir	nensio	nless param	eters ar	d their	physic
significance on tur	bo machines.							
Course Outcomes:								
1. Ability to design	and calculate different para	meters for	turbo ma	chines	.			
2. Prerequisite to C	CFD and Industrial fluid powe	er courses.						
3. Ability to formu	late design criteria.							
4. Ability to under	stand thermodynamics and ki	inematics b	behind tu	rbo ma	achines.			
5. Analyze the per-	formance of turbo machinery	•						
UNIT – I								
Introduction to Turbomachine compressors work, nozzle, di expansion and compression pr	ffuser work, fluid equation,	continuity			-			
UNIT - II								
Fundamental Concepts of Axi	al and Radial Machines: Eule	er's equation	on of ene	ergy tra	ansfer, vane	congrue	nt flow,	influen
of relative circulation, thickne	ess of vanes, number of vane	s on veloc	ity triang	gles, sl	ip factor, St	odola, St	anitz an	d Balje
lip factor, suction pressure a	nd net positive suction head,	phenomer	na of cav	itation	in pumps, c	concept of	of specif	ic spee

shape number, axial, radial and mixed flow machines, similarity laws.

UNIT – III

Gas Dynamics: Fundamental thermodynamic concepts, isentropic conditions, mach numbers, and area, Velocity relations, Dynamic Pressure, Normal shock relation for perfect gas. Supersonic flow, oblique shock waves. Normal shock recoveries, detached shocks, Aerofoil theory.

Centrifugal compressor: Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance.

UNIT - IV

Axial Flow Compressors: Flow Analysis, Work, and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades.

$\mathbf{UNIT} - \mathbf{V}$

Axial Flow Gas Turbines: Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Zweifels relation, Design cascade analysis, Soderberg, Hawthrone, Ainley, Correlations, Secondary flow, Free vortex blade, Blade angles for variable degree of reaction. Actuator disc, Theory, Stress in blades, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design performance.

Text Books:

- 1. Principles of Turbo Machines/DG Shepherd / Macmillan.
- 2. Turbines, Pumps, Compressors/Yahya/ Mc Graw Hill.

- 1. A Treatise on Turbo machines / G. Gopal Krishnan and D. Prithviraj/ SciTech.
- 2. Gas Turbine Theory/ Saravanamuttoo/ Pearson.
- 3. Turbo Machines/ A Valan Arasu/ Vikas Publishing House Pvt. Ltd.

ME733PE: FLUID POWER SYSTEMS (PE – IV)

Course Code ME733PE	Category Core	Hou	Hours/Week			Maximum Marks		
		L	Т	Р	С	CIA	SEE	Tota
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15							es: 60
Prerequisite: Fluid Mechani	cs and Hydraulics Machine	ery						
Course Objectives:								
1. To know the concept	ots of hydraulics & pneu	matics, con	nponents	of h	ydraulic and	pneum	atic cire	cuits a
applications of hydra	ulics and pneumatics in au	tomobiles.						
2. Design of hydraulic an	nd pneumatic circuits for se	elected indus	strial app	licatio	ns.			
3. Design and understand	d the electro-hydraulic and	electro-pneu	umatic ci	rcuits.				
4. Electrical controls in f	luid power systems.							
5. Understand standard s	ymbols, pumps, control va	lves, control	assembl	lies, an	d actuators.			
Course Outcomes: After doi	ng this student should be a	ble to						
*	rties of fluids, Fluids for hy	•						
2. Governing laws. Distr	ibution of fluid power, Des	ign and anal	ysis of ty	ypical	hydraulic cir	cuits.		
3. Know accessories use	d in fluid power system, Fi	ltration system	ems and a	mainte	nance of sys	tem.		
4. Select suitable pump,	motor, and other component	nts for a spe	cified ap	plicati	on.			
5. Design the circuit for	a given application and exe	ecute the san	ne in ind	ustry.				
UNIT – I								
Introduction to oil hydraulics a	and pneumatics, their struct	ture, advanta	ages, and	limita	tions. ISO sy	mbols,	energy l	osses in
nydraulic systems. Application	ns, Basic types, and constru	uctions of Hy	ydraulic j	pumps	and motors.	Pump a	nd moto	r
analysis. Perform an curves an	d parameters.							
-	_							

Hydraulic actuators, types and constructional details, lever systems, control elements – direction, pressure and flow control valves. Valve configurations, General valve analysis, valve lap, flow forces and lateral forces on spool valves. Series and parallel pressure compensation flow control valves. Flapper valve Analysis and Design.

Proportional control valves and servo valves. Nonlinearities in control systems (backlash, hysteresis, dead band and friction nonlinearities). Design and analysis of typical hydraulic circuits. Regenerative circuits, high low circuits, Synchronization circuits, and accumulator sizing.

UNIT – IV

Intensifier circuits Meter-in, Meter-out and Bleed-off circuits; Fail Safe and Counter balancing circuits, accessories used in fluid power system, Filtration systems and maintenance of system. Components of pneumatic systems; Direction, flow and pressure control valves in pneumatic systems. Development of single and multiple actuator circuits. Valves for logic functions; Time delay valve; Exhaust and supply air throttling.

UNIT – V

Examples of typical circuits using Displacement – Time and Travel-Step diagrams. Will-dependent control, Traveldependent control and Time dependent control, combined control, Program Control, Electropneumatic control and airhydraulic control, Ladder diagrams. Applications in Assembly, Feeding, Metal working, materials handling and plastics working.

Text Books:

- 1. Fluid Power Control systems/ Pippenger, J.J., and R. M. Koff/ New York: McGraw Hill.
- 2. "Fluid Power Systems: modeling, simulation and microcomputer control"/ John Watton/ Prentice Hall International.

- 1. Fundamentals of Fluid Power Control. / John Watton/ 1 st Ed. Cambridge University Press, 2009.
- 2. "Fluid Power with applications"/ Anthony Esposito / Pearson Education.

ME700OE: BASIC MECHANICAL ENGINEERING (Open Elective - II)

ME7000E Core 3 - - 3 30 70 100 Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60 ourse Objectives: - 3 30 70 100 I. Understanding of the basic concepts of various aspects of Mechanical Engineering, fields of application, the merits, and limitations and applications. - <th< th=""><th>Course Code</th><th>Category</th><th>Hou</th><th>rs/Wee</th><th>k</th><th>Credits</th><th>Max</th><th>imum I</th><th>Marks</th></th<>	Course Code	Category	Hou	rs/Wee	k	Credits	Max	imum I	Marks
Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60 ourse Objectives: 1. Understanding of the basic concepts of various aspects of Mechanical Engineering, fields of application, the merits, demerits, and limitations and applications. 2. To provide knowledge about application of conduction, convection and radiation heat transfer concepts different practical applications. 3. Analysis of mechanisms. 4. Cam profile drawing for various followers. 5. Drawing displacement diagrams for followers with various types of motions. Ourse Outcomes: 1. Understand the basic modes of heat transfer. 2. Designing a suitable mechanism depending on application 3. Selecting gear and gear train depending on application. UNIT - I Designing a suitable mechanism depending on application. UNIT - I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p nections – systems – processes – thermodynamic equilibrium – laws of thermodynamic- First law applied to open a cosed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a oefficient of Performance (COP). Heat transfer – conduction – general conduction in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – lablack body and grey body radiation.	ME700OE	Core		Т	Р		Tota		
 Jourse Objectives: Understanding of the basic concepts of various aspects of Mechanical Engineering, fields of application, the merits, demerits, and limitations and applications. To provide knowledge about application of conduction, convection and radiation heat transfer concepts different practical applications. Analysis of mechanisms. Cam profile drawing for various followers. Drawing displacement diagrams for followers with various types of motions. Jourse Outcomes: Understand the basic modes of heat transfer. Designing a suitable mechanism depending on application. UNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p unctions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a osed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a officient of Performance (COP). Heat transfer – conduction – general conduction in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation.	Contact Classes: 45	Tutorial Classes: 15		- actical (`lasse	_			
 Understanding of the basic concepts of various aspects of Mechanical Engineering, fields of application, the merits, demerits, and limitations and applications. To provide knowledge about application of conduction, convection and radiation heat transfer concepts different practical applications. Analysis of mechanisms. Cam profile drawing for various followers. Drawing displacement diagrams for followers with various types of motions. Torree Outcomes: Understand the basic modes of heat transfer. Designing a suitable mechanism depending on application Selecting gear and gear train depending on application. UNIT - I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p unctions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a soed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a coefficient of Performance (COP). Heat transfer – conduction – general conduction in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation.						50 I (II	1000		<u>es: 00</u>
 merits, demerits, and limitations and applications. 2. To provide knowledge about application of conduction, convection and radiation heat transfer concepts different practical applications. 3. Analysis of mechanisms. 4. Cam profile drawing for various followers. 5. Drawing displacement diagrams for followers with various types of motions. Outcomes: 1. Understand the basic modes of heat transfer. 2. Designing a suitable mechanism depending on application 3. Selecting gear and gear train depending on application. UNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p unctions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a cosed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a coefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation.	1. Understanding of the	basic concepts of various as	spects of	Mechanio	cal En	gineering, fi	elds of	applicati	ion, th
 different practical applications. Analysis of mechanisms. Cam profile drawing for various followers. Drawing displacement diagrams for followers with various types of motions. ourse Outcomes: Understand the basic modes of heat transfer. Designing a suitable mechanism depending on application Selecting gear and gear train depending on application. UNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p notions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a cosed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a poefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation.	merits, demerits, and l	imitations and applications.							
 different practical applications. 3. Analysis of mechanisms. 4. Cam profile drawing for various followers. 5. Drawing displacement diagrams for followers with various types of motions. ourse Outcomes: Understand the basic modes of heat transfer. Designing a suitable mechanism depending on application Selecting gear and gear train depending on application. UNIT - I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p netions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a cosed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a pefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation.	2. To provide knowled	ge about application of con	duction,	convectio	on and	radiation h	neat tran	sfer con	acepts
 Analysis of mechanisms. Cam profile drawing for various followers. Drawing displacement diagrams for followers with various types of motions. ourse Outcomes: Understand the basic modes of heat transfer. Designing a suitable mechanism depending on application Selecting gear and gear train depending on application. UNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p notions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a cosed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a poefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation.	-								•
 5. Drawing displacement diagrams for followers with various types of motions. 5. Drawing displacement diagrams for followers with various types of motions. 5. Drawing displacement diagrams for followers with various types of motions. 5. Understand the basic modes of heat transfer. 2. Designing a suitable mechanism depending on application 3. Selecting gear and gear train depending on application. JNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p netions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a cosed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a pefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate induction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – lablack body and grey body radiation. 									
 5. Drawing displacement diagrams for followers with various types of motions. 5. Drawing displacement diagrams for followers with various types of motions. 5. Ourse Outcomes: 1. Understand the basic modes of heat transfer. 2. Designing a suitable mechanism depending on application 3. Selecting gear and gear train depending on application. UNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p netions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a osed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a pefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – lablack body and grey body radiation. 	4. Cam profile drawing f	for various followers.							
 Understand the basic modes of heat transfer. Designing a suitable mechanism depending on application Selecting gear and gear train depending on application. UNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p nctions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a osed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a oefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation. 			various ty	pes of m	otions				
 2. Designing a suitable mechanism depending on application 3. Selecting gear and gear train depending on application. UNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p nctions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a osed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a coefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation. UNIT – II 	ourse Outcomes:	-							
 2. Designing a suitable mechanism depending on application 3. Selecting gear and gear train depending on application. UNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p nctions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a osed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a coefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation. UNIT – II 	1. Understand the basic	modes of heat transfer.							
 3. Selecting gear and gear train depending on application. UNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and punctions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a osed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a oefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation. UNIT – II 			lication						
UNIT – I asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p unctions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a osed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a oefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation.	0 0								
asic Concepts of Thermodynamics and Heat Transfer: Definitions – continuum concept – properties – point and p inctions – systems – processes – thermodynamic equilibrium - laws of thermodynamic- First law applied to open a osed systems – steady and unsteady flow systems- Second law – heat engines and heat pumps – efficiency a oefficient of Performance (COP). Heat transfer – conduction – general conduction equation in Cartesian coordinate onduction in composite walls. Convection – free and forced convection – simple empirical correlations. Radiation – la black body and grey body radiation.									
UNIT – II C Engines and Air Conditioning: I C engines – classification - construction and working - two and four stroke engine	notions – systems – process losed systems – steady and oefficient of Performance (C onduction in composite walls	ses – thermodynamic equilib unsteady flow systems- Se COP). Heat transfer – conducts. Convection – free and force	rium - lav econd law ction – ges	vs of then - heat neral con	rmody engine ductio	namic- First es and heat n equation i	law app pumps n Cartes	blied to o – efficie ian coor	open a ency a dinate
C Engines and Air Conditioning: I C engines – classification - construction and working - two and four stroke engine	01111 - 11								
	C Engines and Air Condition	ing: I C engines – classificat	ion - cons	truction a	and wo	orking - two	and four	stroke e	engine

Air conditioning – air cycles, vapour compression cycle – vapour absorption cycle – psychrometric processes. Air cooling – methods and simple cooling load calculations. Systems applicable to mining environment.

Power Transmission: Gears – nomenclature, laws of gearing, types of gears including rack and pinion, interference, gear trains, calculation of gear ratios, couplings - types, features and applications.

Basic concepts in hydraulic & pneumatic power and devices and their utilisation – simple calculations.

UNIT – IV

Kinematics of Machines: Mechanisms – basics – kinematic concepts and definitions – degree of freedom, mechanical advantage – transmission angle – description of common mechanisms – quick return mechanisms, straight line generators, dwell mechanisms, ratchets and escapements – universal joints.

Cams and followers – terminology and definitions, displacement diagrams – uniform velocity, parabolic and simple harmonic motions.

$\mathbf{UNIT} - \mathbf{V}$

Rotodynamic and Vibratory Machines: Fans and compressors – types, construction, working principle, characteristics and applications. Single stage and multistage air compressors – intercooling. Simple calculations for output and efficiency.

Vibration – Importance of free and forced vibration. Vibrators and shakers – construction, working principle, applications and limitations.

Note: HMT Data book to be permitted.

Text Books:

- 1. Elements of Mechanical Engineering/ S.N. Lal/ Cengage Learning.
- 2. Theory of Machines and Mechanisms / Shigley J.E., Pennock G.R. and Uicker J. J./ Oxford University Press, 2003.

- 1. Rajput, R.K. Thermal Engineering, 6th Edition, Laxmi Publications, 2007.
- 2. Ballaney, P.L. Thermal Engineering, Khanna Publishers, 24th Edition, 2003.

ME811PE: INDUSTRIAL ROBOTICS (PE – V)

Course Code	Category	Hou	rs/Wee	k	Credits	Max	imum I	Marks
ME811PE	Core	L	Т	P	С	CIA	SEE	Tota
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15		actical (lasse	s: Nil	Tota	al Class	es: 60
Prerequisite: Basic principle	es of Kinematics and mechan	ICS						
Course Objectives:	, . <u></u> .	• 4	C' 1 1 (1 .	• ,	1
	s to acquire practical experie	ence in the	e field of	Robo	tics through	design	projects	and ca
studies.				C 1 1	c .			
	to understand the importance			s field	s of engineer	rıng.		
-	s to various robots and their o	-						
	nming and industrial applicat							
	nd the application of robots in	n manufact	turing.					
Course Outcomes:								
Upon Completion of this cou	rse, students will be able to:							
1. Understand the basic of	components of robots.							
2. Differentiate types of	robots and robot grippers.							
3. Model forward and in	verse kinematics of robot ma	nipulators.						
4. Analyze forces in link	s and joints of a robot.							
5. Programme a robot to	perform tasks in industrial ap	pplications	. Design	intelli	gent robots ı	using ser	nsors.	
UNIT – I								
Introduction: Automation an	d Robotics – An over view	of Robotic	s – prese	ent and	l future appl	ications	. Compo	onents
he Industrial Robotics: co	ommon types of arms. Co	mponents,	Archite	cture,	number of	degree	s of fr	eedom
Requirements and challenges of	of end effectors, Design of er	nd effector	s, Precisi	on of I	Movement:	Resoluti	on, Accu	aracy a
Repeatability, Speed of Respon	nse and Load Carrying Capac	city.						
UNIT – II								
Motion Analysis: Basic Rota	ation Matrices Equivalent 4	Axis and 4	Angle Fi	uler A	ngles Com	nosite R	otation	Matric
violion Analysis. Dasie Rola	anon mannes, Equivalent F	anis allu P	angie, El	ulei A	ngies, Colli	μυδιίς Γ	otation .	wiatic

Manipulator Kinematics-H notation-H method of Assignment of frames-H Transformation Matrix, joint coordinates and

world coordinates, Forward and inverse kinematics – problems on Industrial Robotic Manipulators.

UNIT – III

Differential transformation of manipulators, Jacobians – problems. Dynamics: Lagrange – Euler and Newton – Euler formations – Problems.

Trajectory planning and avoidance of obstacles, path planning, Slew motion, joint interpolated motion -straight line motion.

UNIT – IV

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison of Actuators, Feedback components: position sensors – potentiometers, resolvers, encoders – Velocity sensors, Tactile and Range sensors, Force and Torque sensors – End Effectors and Tools.

UNIT - V

Robot Application in Manufacturing: Material Transfer - Material handling, loading and unloading- Processing - spot and continuous arc welding & spray painting - Assembly and Inspection. Robotic Programming Methods – Languages: Lead Through Programming, Textual Robotic Languages such as APT, MCL.

Text Books:

- 1. Industrial Robotics / Groover M P /Mc Graw Hill.
- 2. Introduction to Industrial Robotics / Ramachandran Nagarajan / Pearson.

- 1. Robot Dynamics and Controls / Spony and Vidyasagar / John Wiley.
- 2. Robot Analysis and control / Asada, Slotine / Wiley Inter-Science.
- 3. Robotics Fu et al / TMH Publications.

ME812PE: MECHANICAL VIBRATIONS (PE – V)

Course Code	Category	Ηοι	ırs/Wee	k	Credits	Max	imum I	Marks
ME812PE	Core	L	Т	P	C	CIA	SEE	Tota
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pr	actical (Classe	s: Nil	Tota	al Class	es: 60
Prerequisite: Engineering Mo	echanics							
Course Objective:								
1. To Understand variou	us levels of vibrations and	remedie	s for eac	h of th	nem.			
2. To learn the concept	of simple harmonic motio	n, basics	of mech	anical	l vibrations			
3. To determine a comp	lete solution of modeled r	nechanic	al vibrat	ion pr	oblems.			
4. To be able to mathem	natically model real-world	mechan	ical vibra	ation p	problems.			
5. To compute the natu	ral frequencies and mode	shapes of	of a mult	ti degi	ee of freed	om svs	tem and	expla
the modal analysis of	-	F		6-		~j ~		
Course Outcomes:								
Upon Completion of this cou			ь1 <i>С</i>	1	· · · · · 1 · · · 1 · · · · · · · · · ·			
	frequency of transverse vibra				sional vibrat	ions of r	otor syst	ems.
	and effects of vibration in m		-					
*	dels for physical systems and		C					
systems and compute	damping, stiffness and iner	tia in me	chanical	system	is Analyze i	otating		procati
	achine supporting structures,	vibration	icolators	and al	acorborg			
J. Anaryze and design ma	tenine supporting structures,	vioration	150121015	and a	JSOIDEIS.			
UNIT – I								
ingle degree of Freedom sy	*	•					oulomb	dampin
Response to excitation; rotating	unbalance and support excit	ation; vib	ration iso	lation	and transmis	sibility.		
UNIT - II								
Single degree of Freedom sys unctions; response to arbitrary	-				-		-	

Two-degree freedom systems: Principal modes- undamped and damped free and forced vibrations; undamped vibration absorbers;

Multi degree freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi- rotor systems and geared systems; Discrete- Time systems.

$\mathbf{UNIT} - \mathbf{IV}$

Continuous system: Free vibration of strings – longitudinal oscillations of bars- traverse vibrations of beams- Torsional vibrations of shafts.

Critical speeds of shafts: Critical speeds without and with damping, secondary critical speed. **Numerical Methods:** Rayleigh's stodola's, Matrix iteration, Rayleigh- Ritz Method and Holzer's methods.

Vibration measuring instruments: Vibrometers, velocity meters & accelerometers.

$\mathbf{UNIT} - \mathbf{V}$

Sound level and subjective response to sound: Subjective response to sound, frequency dependent human response to sound, sound-pressure dependent human response, the decibel scale, relationship among sound power, sound intensity and sound pressure level, relationship between sound power level and sound intensity, relationship between sound intensity level and sound pressure level, sound measuring instruments.

Textbooks:

- 1. Elements of Vibration Analysis / Meirovitch/ Mc Graw Hill.
- 2. Principles of Vibration / Benson H. Tongue/Oxford.

- 1. Mechanical Vibrations / SS Rao / Pearson.
- 2. Mechanical Vibration /Rao V. Dukkipati, J Srinivas/ PHI.
- 3. Mechanical Vibrations/ G.K. Grover/ Nemchand & Brothers.

MM813PE: COMPOSITE MATERIALS (PE - V)

Course Code	Category	Hou	rs/Week		Credits	Maxi	imum M	larks
MM813PE	Core	L	Т	Р	C	CIA	SEE	Tota
Contact Classes: 45	Tutorial Classes: 15	<u>3</u>	- actical C	-	3 Nil	30 Tota	70 I Classe	100
ourse Objectives:	Tutorial Classes. 15	116		145505		1014	I Classe	5. 00
u u	g of the structure of ceramic n	naterials of	on multip	le len	gth scales.			
2. Develop knowledge of	f point defect generation in ce	ramic ma	terials, a	nd the	r impact on	transpor	t propert	ies.
r c	in different types of reinforce				×.			
C C	essing techniques for producin		ceramic, a	and po	lymer-matri	x compo	sites.	
• •	lationship among synthesis, p			•	•	•		
ourse Outcomes:								
1. Knowledge of the crys	stal structures of a wide range	of ceram	ic materi	als and	l glasses.			
	f composite materials and the				0			
	common fibers are produced	-	-		of the fibers	are relat	ed to the	e inter
structure.			ine prop					
	s for composite materials in d	ifferent ar	polication	IS.				
	processing methods for fabrica		•					
UNIT – I			00011000					
	ssification of Composite ma					n matrix	x, Advai	ntages
mposites, Applications of co	omposites, Functional require	ments of 1	reinforce	ment a	nd matrix.			
UNIT – II								
ypes of reinforcements and the	heir properties: Fibers: Carbon	n, Boron,	Glass, A	ramid,	Al2O3, SiC	, Nature	and mar	nufactu
		D 1 01	atorfacos	Wett	ability and I	Bonding.	The int	
glass, carbon and aramid fi	ibres, Comparison of fibres.	Role of 11	nerraces.		autifity and I	0,		erface
	ibres, Comparison of fibres. I Types of bonding at the Interfa				•	U.		erface
					•	U.		erface
omposites, Interactions and T	Types of bonding at the Interf	ace, Tests	for meas	suring	Interfacial s	trength.		
omposites, Interactions and T NIT – III abrication of Polymeric Ma		ace, Tests	for meas	suring Polym	Interfacial s	trength.		erface

Matrix Composites.

UNIT – IV

Fabrication of Metal Matrix Composites: Solid state fabrication, Liquid state fabrication and In-situ fabrication techniques; Interface in Metal Matrix Composites: Mechanical bonding, Chemical bonding and Interfaces in In-situ Composites; Discontinuously reinforced Metal Matrix Composites, Properties and Applications. Fabrication of Carbon fiber composites, properties, interface and applications.

UNIT – V

Micromechanics of Composites: Density, Mechanical Properties: Prediction of Elastic constants, Micro mechanical approach, Halpin-Tsai equations, Transverse stresses; Thermal properties: Hydrothermal stresses and Mechanics of Load transfer from matrix to fiber.

Text Books:

- 1. Composite Materials Science & Engineering, K.K. Chawla, Springer-Verlag, New York, 1987.
- 2. An Introduction to Composite Materials, Hull, Cambridge, 2nd Edt. 1997.

- 1. Composites, Engineered Materials Handbook, Vol. 1, ASM International, Ohio, 1988.
- Structure and Properties of Composites, Materials Science and Technology, Vol. 13, VCH, Weinheim, Germany, 1993.
- Composite Materials: Engineering and Science, F.L. Matthews and R.D. Rawlings, Chapman & Hall, London, 1994.

ME821PE: INDUSTRIAL MANAGEMENT (PE – VI)

lerstand the v antages and d lerstand plant lerstand value rning various	Core Tutorial Classes: 15 hilosophies of managemen arious types of organization lisadvantages. c location and plant layout. e analysis. Industrial Engineering Pra quality control techniques,	t gurus. n structure actices like				1	SEE 70 al Class	Tota 100 es: 60
ne e: lerstand the p lerstand the v antages and d lerstand plant lerstand value rning various y, statistical o	hilosophies of managemen arious types of organization lisadvantages. location and plant layout. e analysis. Industrial Engineering Pra	Pra t gurus. n structure	s and the		s: Nil	Tota		
ne e: lerstand the p lerstand the v antages and d lerstand plant lerstand value rning various y, statistical o	hilosophies of managemen arious types of organization lisadvantages. location and plant layout. e analysis. Industrial Engineering Pra	t gurus. n structure actices like	s and the			1		
e: lerstand the p lerstand the v antages and d lerstand plant lerstand value rning various y, statistical o	arious types of organization lisadvantages. c location and plant layout. e analysis. Industrial Engineering Pra	n structure actices like		ir featı	ures, and The	eir		
lerstand the v antages and d lerstand plant lerstand value rning various y, statistical o	arious types of organization lisadvantages. c location and plant layout. e analysis. Industrial Engineering Pra	n structure actices like		ir featı	ures, and The	eir		
antages and d lerstand plant lerstand value rning various y, statistical o	lisadvantages. location and plant layout. e analysis. Industrial Engineering Pra	ctices like		ir featı	ures, and The	eir		
antages and d lerstand plant lerstand value rning various y, statistical o	lisadvantages. location and plant layout. e analysis. Industrial Engineering Pra	ctices like						
lerstand value rning various y, statistical e	e analysis. Industrial Engineering Pra		Operatio					
rning various y, statistical o	Industrial Engineering Pra		Operatio					
y, statistical	<i>c c</i>		Operatio					
-	quality control techniques,	Job evalua	- I	ons Ma	nagement te	chniques	s, work	
niques.			ation tech	niques	and networ	k analys	is	
:								
le to apply pr	inciples of management.							
le to design tl	he organization structure.							
le to apply tee	chniques for plant location,	design pla	ant layou	t and v	alue analysis	s.		
le to carry ou	t work study to find the be	est method	for doin	g the v	work and est	ablish st	andard t	ime
a given meth	od.							
le to apply va	rious quality control techn	iques and s	sampling	plans.				
e to do job ev	aluation and network analy	/sis.						
0				•		Ū.		
C	•	C C		or Theo	ory of Motiv	ration, S	ystems A	Approa
adership Styl	les, Social responsibilities	of Manage	ment.					
	le to design the le to apply technologies le to carry ou a given meth le to apply va e to do job ev Ianagement: lor's Scientifi cGregor's Th	le to carry out work study to find the be a given method. le to apply various quality control technic e to do job evaluation and network analy Ianagement: Entrepreneurship and orga lor's Scientific Management Theory, Fa cGregor's Theory X and Theory Y, Her	le to design the organization structure. le to apply techniques for plant location, design pla le to carry out work study to find the best method a given method. le to apply various quality control techniques and s e to do job evaluation and network analysis. Ianagement: Entrepreneurship and organization – lor's Scientific Management Theory, Fayol's Princ cGregor's Theory X and Theory Y, Herzberg's T	le to design the organization structure. le to apply techniques for plant location, design plant layour le to carry out work study to find the best method for doin, a given method. le to apply various quality control techniques and sampling e to do job evaluation and network analysis. Ianagement: Entrepreneurship and organization – Nature and lor's Scientific Management Theory, Fayol's Principles of	le to design the organization structure. le to apply techniques for plant location, design plant layout and vele to carry out work study to find the best method for doing the vera given method. le to apply various quality control techniques and sampling plans. e to do job evaluation and network analysis. Ianagement: Entrepreneurship and organization – Nature and Implor's Scientific Management Theory, Fayol's Principles of Manage cGregor's Theory X and Theory Y, Herzberg's Two-Factor Theorem	le to design the organization structure. le to apply techniques for plant location, design plant layout and value analysis le to carry out work study to find the best method for doing the work and est a given method. le to apply various quality control techniques and sampling plans. e to do job evaluation and network analysis. Ianagement: Entrepreneurship and organization – Nature and Importance of Nor's Scientific Management Theory, Fayol's Principles of Management, MascGregor's Theory X and Theory Y, Herzberg's Two-Factor Theory of Motiv	le to design the organization structure. le to apply techniques for plant location, design plant layout and value analysis. le to carry out work study to find the best method for doing the work and establish st a given method. le to apply various quality control techniques and sampling plans. e to do job evaluation and network analysis. Hanagement: Entrepreneurship and organization – Nature and Importance of Managen lor's Scientific Management Theory, Fayol's Principles of Management, Maslow's T cGregor's Theory X and Theory Y, Herzberg's Two-Factor Theory of Motivation, S	le to design the organization structure. le to apply techniques for plant location, design plant layout and value analysis. le to carry out work study to find the best method for doing the work and establish standard to a given method. le to apply various quality control techniques and sampling plans. e to do job evaluation and network analysis. Ianagement: Entrepreneurship and organization – Nature and Importance of Management, Fur- lor's Scientific Management Theory, Fayol's Principles of Management, Maslow's Theory of cGregor's Theory X and Theory Y, Herzberg's Two-Factor Theory of Motivation, Systems A

Designing Organizational Structures: Departmentalization and Decentralization, Types of Organization structures –

Line organization, Line and staff organization, functional organization, Committee organization, matrix organization, Virtual Organization, Cellular Organization, team structure, boundary less organization, inverted pyramid structure, lean and flat organization structure and their merits, demerits and suitability.

UNIT – III

Operations Management: Objectives- product design process- Process selection-Types of production system (Job, batch and Mass Production), Plant location-factors- Urban-Rural sites comparison- Types of Plant Layouts- Design of product layout- Line balancing (RPW method) Value analysis-Definition-types of values- Objectives- Phases of value analysis-Fast diagram.

UNIT - IV:

Work Study: Introduction — definition — objectives — steps in work study — Method study — definition, objectives — steps of method study. Work Measurement — purpose — types of study — stop watch methods — steps — key rating — allowances — standard time calculations — work sampling.

Statistical Quality Control: variables-attributes, Shewart control charts for variables- chart, R chart,

– Attributes- Defective-Defect- Charts for attributes-p-chart -c chart (simple Problems), Acceptance Sampling- Single sampling- Double sampling plans-OC curves.

UNIT - V

Job Evaluation: Methods of job evaluation — simple routing objective systems — classification method factor comparison method, point method, benefits of job evaluation and limitations. **Project Management (PERT/CPM):** Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), Identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing. (simple problems)

Text Books:

- 1. Industrial Engineering and Management/O.P. Khanna/Khanna Publishers.
- 2. Industrial Engineering and Management Science/T.R. Banga and S.C. Sarma/Khanna Publishers.

- 1. Motion and Time Study by Ralph M Barnes! John Willey & Sons Work Study by ILO.
- 2. Human factors in Engineering & Design/Ernest J McCormick /TMH.
- 3. Production & Operation Management /Paneer Selvam/PHI
- 4. Industrial Engineering Management/NVS Raju/Cengage Learning.
- 5. Industrial Engineering Hand Book/Maynard.
- 6. Industrial Engineering Management I Ravi Shankar/Galgotia.

ME822PE: PRODUCTION AND OPERATIONS MANAGEMENT (PE - VI)

Course Code	Category	Hou	rs/Wee	k	Credits	Max	imum I	Marks
ME822PE	Core	L	Т	P	С	CIA	SEE	Tota
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		3	-	-	3	30	70	100
Contact Classes: 45 Prerequisite: None	Tutorial Classes: 15	Pra	actical (lasse	s: Nil	Tota	al Class	es: 60
Course Objective:								
Ū	of studying the subject: Produ	ction and	Operatio	ons Ma	nagement.			
-	cs of various types of product		-		-	nt issues	s of oper	ations
Management.		5					I	
-	lure for product design & app	roaches f	or produc	t deve	lopment.			
4. Learn the procedure to	carry out value analysis by c	lifferent n	nethods.					
5. Learn the methods for	location of plant and plant la	youts.						
6. Understand the proceed	lures for aggregate planning,	MRP and	JIT.					
7. Learn the procedures	for scheduling.							
8. Learning the technique	es for network analysis.							
Course Outcomes:								
1. Able to execute operate	tions management functions.							
2. Able to carry out value	e analysis.							
3. Able to carry out aggr	egate planning and implemen	t MRP O1	JIT.					
4. Able to schedule the j	obs so as to complete them in	minimun	n make sp	oan tim	e.			
5. Able to carry out netw	ork analysis.							
UNIT – I								
	inition – Objectives – Types	of produc	ction syst	tems –	historical d	evelopm	ent of o	peratio
nanagement – Current issues								
	nts of good product design	-	-		~ ~		-	n produ
evelopment – standardization	n – simplification – Speed to n	narket – Iı	ntroductio	on to c	oncurrent en	igineerin	ıg.	

Value engineering – objective – types of values – function & cost – product life cycle- steps in value engineering – methodology in value engineering – FAST Diagram – Matrix Method.

Location – Facility location and layout – Factors considerations in Plant location- Comparative Study of rural and urban sites – Methods of selection plant layout – objective of good layout – Principles – Types of layout – line balancing.

UNIT – III

Aggregate Planning – definition – Different Strategies – Various models of Aggregate Planning – Transportation and graphical models.

Advance inventory control systems push systems – Material Requirement – Terminology – types of demands – inputs to MRP- MRP logic – Lot sizing methods – benefits and drawbacks of MRP – Manufacturing Resources Planning (MRP – II), Pull systems – Vs Push system – Just in time (JIT) philosophy Kanban System – Calculation of number of Kanbans Requirements for implementation JIT-JIT Production process – benefits of JIT.

UNIT – IV

Scheduling – Policies – Types of scheduling – Forward and Backward Scheduling – Grant Charts – Flow shop Scheduling – n jobs and 2 machines, n jobs and 3 machines – job shop Scheduling – 2 jobs and n machines – Line of Balance.

UNIT – V

Project Management – Programming Evaluation Review Techniques (PERT) – three times estimation

critical path – probability of completion of project – critical path method – crashing of simple nature. – Total Quality
 Management – ISO 9000 Series Standards – Six Sigma.

Text Books:

- 1. Operations Management/ Chase/ TMH.
- 2. Production and Operations Management/ S.N. Chary/ TMH.

- 1. "Operations Management / E.S. Buffs/ Wiley.
- 2. "Operations Management "Theory and Problems/Joseph G. Monks.
- 3. "Production Systems Management /James I. Riggs.
- 4. "Production and Operations Management /Panner Selvam/ PHI.
- 5. "Production and Operations Analysis/ Nahima.
- 6. Operations Management/ William J. Stevenson/ Mc Graw Hill.

ME833PE: TRIBOLOGY (PE - VI)

	Category	ΠΟΙ	irs/Wee	K	Credits	Max	Maximum Marks				
ME833PE	Core	L	Т	P	C	CIA	SEE	Tota			
		3	-	-	3	30	70	100			
Contact Classes: 45	Tutorial Classes: 15		actical (lasse	s: Nil	Tota	l Class	es: 60			
erequisite: Fluid mechani	ics, Design of machine men	110015-11									
ourse Objectives:											
1. To provide the knowl	edge and importance of Tri	bology in D	esign, fri	ction,	wear and lub	rication	aspects	of			
machine components	s.										
2. To expose the student	to different types of bearin	igs, bearing	materials	•							
3. To understand friction	n characteristics and power	losses in jou	rnal bear	ings.							
4. To learn theory and co	oncepts about different type	es of lubricat	tion.								
5. To select the proper g	rade lubricant for specific a	application.									
ourse Outcomes:											
1. Understanding friction	n characteristics in journal l	bearings.									
2. Knowledge about diff	Ferent theories of lubrication	n to reduce f	riction ar	nd wea	r.						
3. Students will be able	to identify and describe th	ne theories o	of friction	and t	he factors at	ffecting	the coef	ficient			
friction between con	tacting surfaces in relative	motion.									
4. Students will be able	to identify the lubrication n	nodes such a	s hydrod	ynami	c lubrication						
5. Students will be able	to know requirements of be	aring materi	als, Type	es of b	earing mater	ials.					
VNIT – I											
udy of various parameters	Viscosity, flow of fluids	, viscosity	and its v	ariatio	on, absolute	and kin	ematic	viscosit			
nperature dependent variati	on, viscosity index, determ	ination of vi	scosity, c	lifferer	nt viscometer	rs used.					
drostatic lubrication: Hyd	rostatic step bearing, app	lication to	pivoted	pad th	rust bearing	g and ot	her app	lication			
	queeze films and its applica										

Hydrodynamic theory of lubrication: Various theories of lubrication, petroffs equation, Reynold's equation in two dimensions -Effects of side leakage - Reynolds equation in three dimensions, Friction in sliding bearing, hydro-dynamic theory applied to journal bearing, minimum oil film thickness, oil whip and whirl anti -friction bearing.

Friction and power losses in journal bearings: Calibration of friction loss, friction in concentric bearings, bearing modulus, Sommer-field number, heat balance, practical considerations of journal bearing design.

UNIT – IV

Air lubricated bearing: Advantages and disadvantages, application to Hydrodynamic journal bearings, hydrodynamic thrust bearings. Hydrostatic bearing Analysis including compressibility effect. Study of current concepts of boundary friction and dry friction.

UNIT – V

Types of bearing oil pads: Hydrostatic bearing wick oiled bearings, oil rings, pressure feed bearing, partial bearings externally pressurized bearings. Bearing materials: General requirements of bearing materials, types of bearing materials.

Text Books:

- 1. Engineering Tribology/ Gwidon W. Stachowiak & Andrew W. Batchelor/Elesevier.
- 2. Engineering Tribology/ Prasanta Sahoo / PHI.

- 1. Tribology B.C. Majumdar.
- 2. Fundamentals of Tribology, Basu, Sen Gupta and Ahuja/PHI.
- 3. Tribology in Industry: Sushil Kumar Srivatsava, S. Chand &Co.

ME800OE: NON-CONVENTIONAL SOURCES OF ENERGY (Open Elective – III)

Course Code	Category	Hou	rs/Wee	k	Credits	Max	imum l	Marks
ME800OE	Core	L	Т	P	C	CIA	SEE	Tota
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15		actical (Classe	s: Nil	Tota	al Class	es: 60
Prerequisite: Thermodynami Course Objectives:	ics, Fluid Mechanics and He	at Transfer						
Ū			a					
	different types of Non-Conv							
	different equipment's used in	U U						
	design and fabrication of equ	-				on of ene	ergy.	
4. Understand the ba	sic concepts and operation of	f renewabl	e energy	syster	ns.			
5. To exploit renewa	ble energy resources and effe	ective tech	nologies					
Course Outcomes: At the er	nd of the course, the student	will be abl	e to:					
biogas and hydrogen. 3. Understand the concep	of energy conversion from a other and applications of fuel centergy storage for specific app	ells, thermo						bioma
Principles of Solar Radiation	*							
impact of solar power - Physics						radiatic	on, Solar	radiatio
on titled surface, Instruments fo	C							
Solar Energy Collection: Fla	t plate and concentrating co	ollectors, c	lassificat	tion of	f concentrati	ng colle	ctors, or	rientatio
and thermal analysis, advanced	l collectors.							
UNIT - II								
Solar Energy Storage and A	Applications: Different met	hods, sens	ible, late	ent hea	at and stratif	fied stor	age, sol	ar ponc

Wind Energy: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria.

Bio-Mass: Principles of Bio-Conversion, Anaerobic /aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of biogas, utilization for cooking, I.C. Engine operation, and economic aspects.

UNIT - IV

Geothermal Energy: Resources, types of wells, methods of harnessing the energy, potential in India. **Ocean Energy** – OTEC, Principles, utilization, setting of OTEC plants, thermodynamic cycles. Tidal and Wave energy: Potential and conversion techniques, mini-hydel power plants, their economics.

UNIT – V

Direct Energy Conversion: Need for DEC, Carnot cycle, limitations, Principles of DEC. Thermo- electric generators, Seebeck, Peltier and Joule Thompson effects, figure of merit, materials, applications, MHD generators, principles, dissociation and ionization, hall effect, magnetic flux, MHD accelerator, MHD engine, power generation systems, electron gas dynamic conversion, economic aspects. Fuel cells, principle, faraday's laws, thermodynamic aspects, selection of fuels and operating conditions.

Text Books:

- 1. Renewable Energy Resources / Tiwari and Ghosal / Narosa.
- 2. Non- conventional Energy Sources / G.D. Rai/ Khanna Publishers.
- 3. Biological Energy Resources/ Malcolm Fleischer & Chris Lawis/ E&FN Spon.

- 1. Renewable Energy Sources / Twidell & Weir.
- 2. Solar Power Engineering / B.S. Magal Frank Kreith & J.F. Kreith.
- 3. Principles of Solar Energy / Frank Krieth & John F Kreider.
- 4. Non-Conventional Energy / Ashok V Desai / Wiley Eastern.
- 5. Non-Conventional Energy Systems / K Mittal / Wheeler.
- 6. Renewable Energy Technologies / Ramesh & Kumar / Narosa.