3

Design of Beams

3.1 Plastic Theory

Q.1 Explain plastic theory of structural steel.

Ans.: • Steel has a unique property called ductility, because of which it is able to absorb large deformation beyond the elastic limit without fracture.

- Due to this property, steel possesses reserve strength beyond its yield strength.
- The method which utilizes this reserve strength is called the plastic method of analysis.
- The plastic theory makes the design procedure more rational, since the level of safety is related to collapse load of the structure and not to the apparent failure at one point.

Q.2 Give general requirements for plastic design.

Ans.: The following assumptions are made in plastic design to simplify computations.

- \bullet The material obeys Hook's law till the stress reaches $f_y\,.$
- The yield stress and modulus of elasticity have the same value in compression and tension. (See Fig. Q.2.1).
- The material is homogeneous and isotropic in both the elastic and plastic states.
- The material is assumed to be sufficiently ductile to permit large rotation of the section to take place.
- Plastic hinge rotations are when compared with the elastic deformations, so that all the rotations are concentrated at the plastic hinges. The segments between plastic hinges. The segments between plastic hinges are rigid.
- The influence of normal and shear forces on plastic moments is not considered.

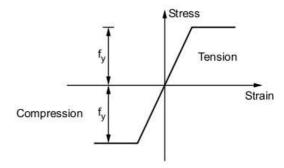


Fig. Q.2.1 Stress - Strain curve for perfectly plastic material

- Plane sections remain plane even after bending and the effect of shear is neglected.
- The equilibrium of forces at the time of collapse is considered for the undeformed state of the structure.
- No instability occurs in any member of the structure upto collapse.

3.2 Plastic Hinge Concept

Q.3 Explain the plastic hinge concept with neat sketch of the section.

Ans.: • At the centre of area there will be fully plasticity over the full depth of section and section will behave like a hinge. This is called plastic hinge.

- It behaves like a frictionless mechanical hinge except that there is always a fixed moment constraint which is equal to the plastic moment capacity of the section.
- Thus the plastic hinge may be defined as a yielded zone, where the bending of a structural member can cause an infinite rotation to take place at a constant plastic moment M_P of the section.
- As shown in above, plastic hinges form in a member at the maximum bending moment locations.

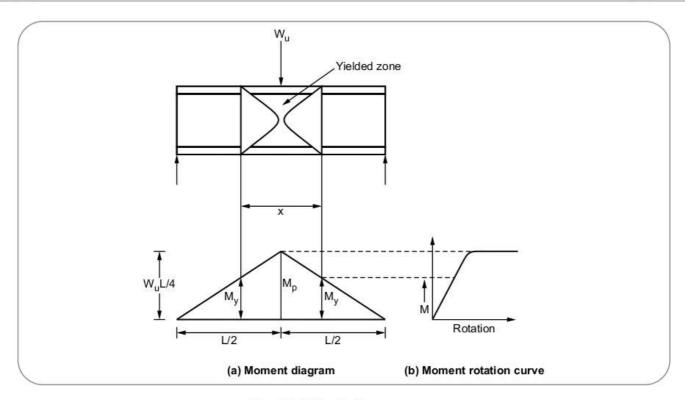


Fig. Q.3.1 Plastic hinge concept

- However, at the intersections of two members, where the bending moment is the same, a hinge forms in weaker member.
- Generally, hinges are located at restrained ends, intersections of members, and point loads.
- The hinges may not form simultaneously as the loading increases, but this is not important for calculating the final collapse load.

3.3 Theorems of Plastic Analysis

Q.4 Explain the theorems of plastic analysis?

Ans.: Theorems in plastic analysis: Based on the number of conditions satisfied, we have three theorems in plastic analysis.

1) Static Theorem (Lower bound theorem) :

 This theorem states that the load computed from any distribution of BMDs in equilibrium with external loads (safe and statically admissible BMD) so that the maximum BM in any member shall not exceed its plastic moment, M_p (M < or = M_p) is less than or equal to the true collapse load.

- This theorem leads to equilibrium or static method of plastic analysis.
- This theorem also called the safe theorem satisfies equilibrium and plastic moment condition.

2) Kinematic Theorem (Upper bound theorem):

- This theorem states that the load computed from any assumed kinematically admissible mechanism is greater than or equal to the true collapse load.
- This theorem leads to kinematic or mechanism method of analysis.

3) Uniqueness Theorem:

- This theorem states that if the load evaluated by static and kinematic theorems is same, then it is the true collapse load.
- All the three conditions of plastic analysis are satisfied. According to this theorem, there is only one unique solution for a given structure, while there are innumerable possible solutions with other theorems.

3.4 Classifications of Beams as per I.S. 800 - 2007

Q.5 Explain classification of sections as per IS 800: 2007.

Ans.: On the basis of IS 800 - 2007, classification of various cross section as follows:

1) Class 1 (Plastic) Cross Section

These sections can develop plastic hinges and have the rotation capacity required for failure of the structure by formation of plastic mehanism.

2) Class 2 (Compact) Cross Section

Such sections can develop plastic moment of resistance, but have inadequate plastic hinge rotation capacity for formation of plastic mechanism, due to local buckling.

3) Class 3 (Semicompact) Cross Sections

These are the sections in which the extreme fibre in compression can reach yield stress, but cannot develop the plastic moment of resistance, due to local buckling.

4) Class 4 (Slender) Cross Sections

The cross sections the element of which buckle locally even before reaching yield stress belong to this category.

Q.6 Draw neat sketches of different types of beam sections.

Ans.:

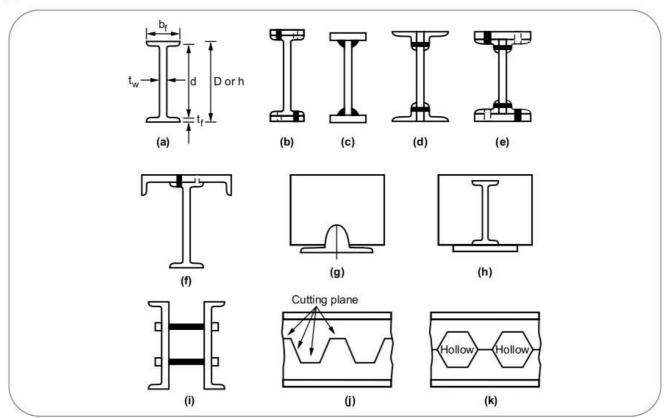


Fig. Q.6.1 Different types of open beam sections

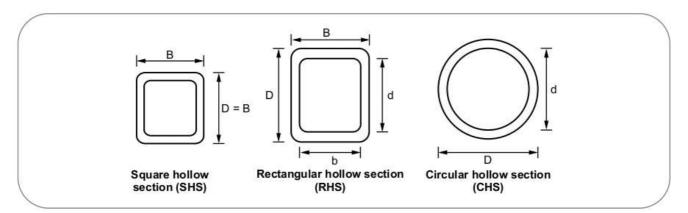
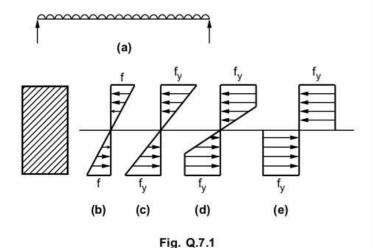



Fig. Q.6.2 Some typical types of closed beam sections.

3.5 Design of Beams

Q.7 Explain the behaviour of beam in flexure or moment.

Ans.: • Consider the cross section of a simply supported beam where the bending moment is maximum for given loading.

1) Within the elastic limit the stress varies linearly from compression to tension as shown in Fig. Q.7.1 (b).

- As the load is gradually increased stresses increase proportionally till extreme fibre is subjected to yield stress. Then extreme fibre yields. Fig. Q.7.1(c).
- As the load is gradually increased by one fibre reach yield stress and stop resisting additional load. Fig. Q.7.1(d) shows partially yielded stress.

- 4) However, resistance to load continuous till all fibers are yielded as shown in Fig. Q.7.1(e).
- 5) After this condition the section will not resist further moment due to increase in load. This condition when all fibres at a section yield is called formation of plastic hinge.
- 6) After this the rotation at section will take place without resisting additional moment but the moment corresponding to yielding of all fibres is resisted. This moment capacity is called plastic moment capacity of section and is denoted by M_p.

3.6 Bending and Shear Strength / Buckling

Q.8 Give expression for bending strength of laterally supported beams.

Ans.: IS 800 : 2007 consider two cases with design shear strength (V_d).

a) If V 0.6 V_d

The design bending strength M_d shall be taken as,

$$M_d = {}_b Z_p f_y \frac{1}{m0}$$

 $1.2 Z_e f_y = \frac{1}{m0}$ (For simply supported beam)

$$1.5 Z_e$$
 f_y $\frac{1}{m0}$ (For cantilever beam)

where,

b = 1.0 for plastic and compact sections.

= $\frac{Z_e}{Z_p}$ for semi-compact sections

Z_p = Plastic sectional modulus

Z_e = Elastic sectional modulus

b) If $V > 0.6 V_d$

$$M_d = M_{dv}$$

where, M_{dv} = Design bending strength under high shear

 $M_{\rm dv}$ is to be calculated as given in IS 800 : 2007, Clause 9.2.2.

a) Plastic or Compact section

$$M_{dv} = M_d - (M_d - M_{fd})$$
 1.2 Z_e $f_y = \frac{1}{m0}$

where,

$$= \frac{2V}{V_d} - 1^2$$

M_d = Plastic design moment of the whole section.

V = Factored applied shear force.

V_d = Design shear strength

M_{fd} = Plastic design strength of the area of cross section excluding the shear area

b) Semi - compact section

$$M_{\rm dv} = \frac{Z_{\rm e} f_{\rm y}}{m0}$$

Q.9 Explain lateral stability of beams and lateral torsional buckling of beam.

Ans.:

- Whan a beam is loaded, one of the flanges of beam comes in compression and other in tension.
- ullet For economy in beam design, I_z is made considerably larger than I_v .
- Such beams are quite weak in bending in the plane normal to the web and thus compression flange of the beam is liable to buckle in the direction in which it is free to move i.e. in the horizontal direction.

- ullet This buckling tendancy increases as the ratio I_z/I_y increases. However, the bottom flange of the beam remains in tension and thus remains straight.
- But bottom flange, web and the compression flange acts a unit and thus the whole section rotates as shown in Fig. Q.9.1 below.

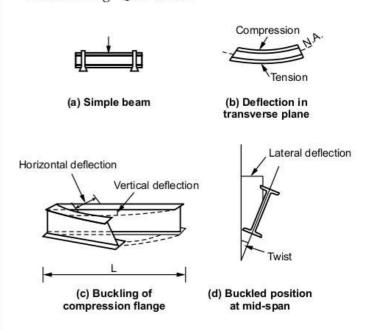


Fig. Q.9.1 Lateral torsional buckling of I-beam section

Elastic Critical Moment

It is the bending moment at which the beam fails by lateral buckling when subjected to uniform moment.

 The lateral buckling of compression flange can be prevented then flexural strength of the beam can be used to its full value.

Q.10 Explain built - up beam ?

Ans.: • A built-up beam is also known as compound beam.

- The built-up beams are used when the span, load and corresponding bending moment are of such magnitudes that rolled steel beam section becomes inadequate to provide required section modulus.
- Built-up beams are also used when rolled steel beams are inadequate for limited depth.
- In building construction, the depth of beam is limited by a space provided by the architect.

- Drawing beam of small depth of beam is limited by a space provided by the architect.
- The strength of rolled steel beams is increased by adding plates to its flange which is one of the method forming built-in section.

3.8 Laterally Supported Beams

Q.11 What do you understand laterally restrained beams? Explain with diagram?

[JNTU: May-16, 17, Marks 3]

Ans.: 1) Laterally Supported Beams:

- A beam can fail by reaching the plastic moment M_P. If it can remain stable upto the fully plastic condition.
- This situation is possible where compression flange buckling of the beam is restrained and constituent elements (flange or web) do not buckle locally and are referred to as laterally restrained beams.
- With increasing traverse loads, these laterally restrained beams will attain full moment capacity. (See Fig. Q.11.1)

Q.12 Give design procedure and checks for rolled beam sections.

Ans.: Design Procedure:

- A trial section is selected assuming it is going to be plastic section (class 1 section).
- 2) Then it is checked for the class it belongs.
- 3) Check for bending strength.
- 4) Check for shear strength.
- 5) Check for the deflection.

If any check fails the section is revised.

Checks required for beam design,

1) Check for Shear Capacity

- Design shear = V
- · Design shear strength of section,

$$V_d = \frac{f_y + h + t_w}{\sqrt{3}}$$

- For safe design, $V_d > V$
- In case of low shear, $V < 0.6 V_d$

2) Check for design bending strength

· Design bending strength,

$$M_d = {}_b Z_p \frac{f_y}{m_0} 1.2 \frac{Z_e f_y}{m_0}$$

• If $\frac{d}{t_w}$ < 67, then $_b$ = 1

3) Check for deflection

 Permissible deflection for simply supply supported beam,

$$=\frac{l}{300}$$

Maximum deflection,

$$_{\text{cal}} = \frac{5}{384} \frac{\text{w}l^4}{\text{EI}}$$

for safe condition, > cal

4) Check for web bearing

• Bearing strength,

$$F_{w} = A_{e} \frac{f_{yw}}{m0} = (b + n_{1}) t_{w} \frac{f_{yw}}{m0}$$

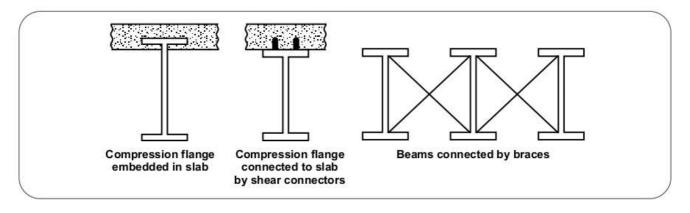


Fig. Q.11.1 Laterally supported beams

• Design shear strength = V_d

For safe condition, $F_w > V_d$

5) Check for web buckling (at support)

· Capacity of web section,

$$F_{wb} = A_b f_{cd}$$

$$A_b = B_1 t_w = (b+n)t_w$$

For safe condition, $F_{wb} > V_d$

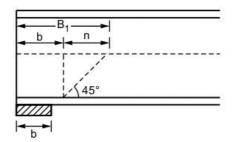


Fig. Q.12.1

3.9 Design of Eccentric Connections

Q.13 What is eccentric connections? Explain with diagram.

Ans.: • If the force applied does not pass through the CG of the joint then such joint carries moment in addition to an axial direct force. Such type of connections are called as **eccentric connections**.

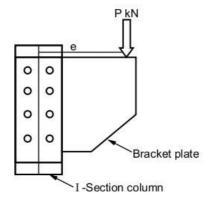
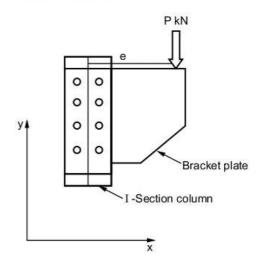
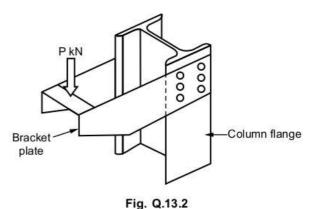




Fig. Q.13.1

Types of eccentric connections:

1) Bracket connections:

2) Framed connections:

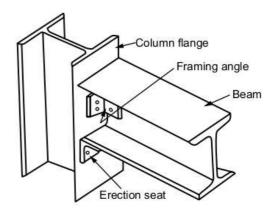


Fig. Q.13.3

3) Seat connection:

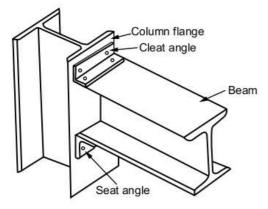


Fig. Q.13.4

Q.14 Design a simply supported plated rolled steel beam section to carry a uniformly distributed load 20 kN/m inclusive of self weight. Effective span of the beam is 3 m. The compression flange of the beam is laterally supported.

[JNTU: April-18, Marks 10]

Ans. : Given data :

Span =
$$3 \text{ m} = 3000 \text{ mm}$$

Total UDL = 20 kN/m

Factored UDL = $1.5 \times 20 = 30 \text{ kN/m}$

Assume Fe410 grade of steel,

$$f_{v} = 250 \text{ MPa}, \quad f_{u} = 410 \text{ MPa}$$

1) Maximum bending moment and shear force :

i)
$$M = \frac{wL^2}{8} = \frac{30 \text{ } 3^2}{8} = 33.75 \text{ kN - m}$$
$$= 33.75 \text{ } 10^6 \text{ N.mm}$$
ii)
$$V = \frac{wL}{2} = \frac{30 \text{ } 3}{2} = 45 \text{ kN}$$

2) Trial section:

$$Z_{p(req)} = \frac{M_{m0}}{f_y} = \frac{33.75 \cdot 10^6 \cdot 1.1}{250}$$

= 148.5 \quad 10^3 \quad mm^3

Let us provide ISLB 200 @ 194 N/m.

The properties of a section are,

$$h = 200 \text{ mm}$$

$$b_f = 100 \text{ mm}$$

$$t_f = 7.3 \text{ mm}$$

 $d = h-2(t_f + r_1)$
 $= 200-2(7.3+9.5) = 166.40 \text{ mm}$
 $t_w = 5.4 \text{ mm}$
 $I_{zz} = 1696.6 \cdot 10^4 \text{ mm}^4$
 $Z_e = 169.7 \cdot 10^3 \text{ mm}^4$
 $Z_p = 184.3 \cdot 10^3 \text{ mm}^3$

3) Section classification:

$$= \sqrt{\frac{250}{f_y}} = \sqrt{\frac{250}{250}} = 1$$

$$b = \frac{b_f}{2} = \frac{100}{2} = 50 \text{ mm}$$

$$\frac{b}{t_f} = \frac{50}{7.3} = 6.85 < 9.4$$

$$\frac{d}{t_w} = \frac{166.40}{5.4} = 30.81 < 84$$

Hence, section is a plastic section.

- 4) Check for shear capacity:
- Design shear force = Maximum shear force

$$V = 45 \text{ kN}$$

· Design shear strength of section,

$$V_{d} = \frac{f_{y}}{\sqrt{m_{0}}} \quad h \quad t_{w}$$

$$= \frac{250}{\sqrt{1.1}} \quad 200 \quad 5.4 \quad 10^{-3}$$

$$= 141.713 \quad kN > 45 \quad kN$$

Hence, OK.

5) Check for high / low shear :

$$0.6 V_d = 0.6 141.713 = 85.02 kN > V$$

Hence OK.

6) Check for design bending strength:

Since section is plastic, $_b = 1$

Design bending strength,

$$M_d = {}_b Z_p \frac{f_y}{m0}$$

= 1 184.3
$$10^3 \frac{250}{1.1} 10^{-6}$$

= 41.895 kN.m
 $1.2 Z_e \frac{f_y}{m0}$
= 1.2 169.7 $10^3 \frac{250}{1.1} 10^{-6}$
= 46.281 kN.m

Hence, safe for maximum bending moment.

7) Check for deflection:

• Permissible deflection,

$$= \frac{l}{300} = \frac{3000}{300} = 10 \text{ mm}$$

· Maximum actual deflection,

$$cal = \frac{5}{384} \frac{wl^3}{EI}$$

$$= \frac{5}{384} \frac{30 \cdot 10^3 \cdot 3000^3}{2 \cdot 10^5 \cdot 1696.6 \cdot 10^4}$$

= 3.11 mm < 10 mm

Hence, safe against deflection.

Q.15 Design a stiffened seated connection for an ISMB 350 @ 514 N/m with the column section ISHB 300 @ 576.8 N/m. The beam transmits an end reaction of 320 kN due to factored loads. The steel is of grade of Fe410.

[JNTU: May-17, Marks 10]

Ans.: Design with bolted connections:

For Fe 410 grade of steel; f_u = 410 MPa, f_{vw} = 250 MPa

For bolts of grade of 4.6 : f_{ub} = 400 MPa

Partial safety factor for material of bolt: mb = 1.25

Design of Beams

Partial safety factor for the material: $_{m0} = 1.10$

$$= \sqrt{\frac{250}{f_y}} = \sqrt{\frac{250}{250}} = 1.0$$

Step 1: The relevant properties of the sections to be connected from steel table are:

Property	ISMB 350	ISHB 300
Width of flange, b _f	140 mm	250 mm
Thickness of flange, t _f	14.2 mm	10.6 mm
Thickness of web, tw	8.1 mm	7.6 mm
Gauge, g	80 mm	
Radius at the root, R ₁	14 mm	

The length of seat angle, B = Width of beam flange

= **140 mm**,
$$(b_f = 140 mm)$$
.

Bearing length of seat leg,

$$b = \frac{R}{t_w} \frac{m0}{f_{yw}}$$
$$= \frac{320 \cdot 10^3}{8.1} \cdot \frac{1.10}{250} = 173.82 \text{ mm}$$

Provide a clearance c of 5 mm between the beam and the column flange.

Required length of outstanding leg = 173.82 mm $\approx 200 \text{ mm}$

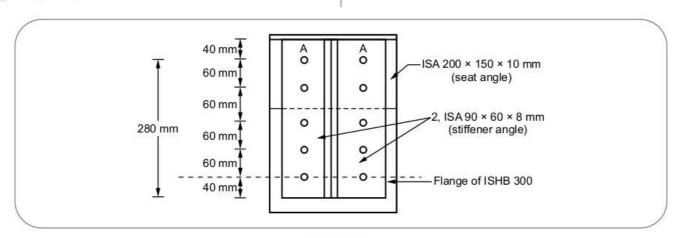


Fig. Q.15.1

Step 2: Let us provide seat angle $200 \times 150 \times 10$ mm with seating leg of 200 mm connected to the flange of beam with 2, 24 diameter bolts of grade 4.6.

Radius at root of angle, $R_a = 13.5$ mm (From IS Handbook No. 1)

Step 3: Stiffener angles:

Bearing area required by stiffener angles,

Required A =
$$R \frac{m0}{f_y}$$

= 320 10³ $\frac{1.1}{250}$ = 1408 mm²

Let us provide two angles ISA 90 × 60 × 8 mm.

Area provided by the stiffening legs of the angles = $2 \times (90 \times 8) = 1440 \text{ mm}^2$

Length of outstanding leg = 90 - 8 = 82 mm

Thickness of the angle, $t_a = 8$ mm should be more than t_w i.e. (8.1 mm).

Since the thickness is almost same and stiffener angle section may be used.

Length of outstand of stiffener | $14 t_a$ i.e. $14 \times 8 \times 1$ = 112 mm (= 1) which is as it should be.

Distance of end reaction from column flange,

$$e_x = \frac{200}{2} = 100 \text{ mm}$$

Stiffener angles provide some rigidity to seat angle and the reaction is assumed to act at the middle of the seat leg. Thus, the eccentricity is increased.

Step 4: Design of connections:

Let us provide 24 mm diameter bolts of grade 4.6, at a pitch of 60 mm. The bolts connecting the legs of stiffener angles with column flange will be in single shear and bearing.

For 24 mm diameter bolt, $A_{nb} = 353 \text{ mm}^2$

Minimum pitch, $p = 2.5 \times 24 = 60 \text{ mm}$

Edge distance, e = 39 mm 40 mm

Diameter of bolt hole, $d_0 = 24 + 2 = 26 \text{ mm}$

a) Strength of the bolt in single shear,

$$V_{dsb} = A_{nb} \frac{f_{ub}}{\sqrt{3}}$$

= 353
$$\frac{400}{\sqrt{3}}$$
 10⁻³ = **65.22 kN**

b) Strength of the bolt in bearing,

$$V_{dpb} = 2.5 k_b dt \frac{f_u}{mb}$$

 k_b is at least of $\frac{e}{3 d_0} = \frac{40}{3 26} = 0.513$;

$$\frac{p}{3d_0} - 0.25 = \frac{60}{3 \cdot 26} - 0.25 = 0.519;$$

$$\frac{f_{ub}}{f_{11}} = \frac{400}{410} = 0.975$$
; and 1.0

Hence, $k_b = 0.513$

$$V_{dpb} = 2.5 \ 0.513 \ 24 \ 8 \ \frac{410}{1.25} \ 10^{-3}$$

= 80.76 kN

Hence, strength of the bolt = 65.22 kN

There will be two vertical rows of bolts connecting legs of the two stiffener angles with the column flange.

Number of bolts in one row,

n =
$$\sqrt{\frac{6 \text{ M}}{\text{pn V}_{\text{sd}}}}$$
 = $\sqrt{\frac{6 \ 320 \ 10^3 \ 100}{60 \ 2 \ 65.22 \ 10^3}}$
= 4.95 \(\triangle 5\)

The depth of stiffener angle = $4 \times 60 + 2 \times 40$ = 320 mm

$$h = 320 - 40 = 280 \text{ mm}$$

$$h/7 = 280/7 = 40 \text{ mm}$$

Refer Fig. Ex. 14.6.

The critical bolt will be A

$$y_i = 2 [0 60 120 180 240] = 1200 \text{ mm}$$

 $y_i^2 = 2 [0 60^2 120^2 180^2 240^2]$
= 216,000 mm²

Step 5:

a) Moment shared by the critical bolt,

$$M = \frac{M}{1 + \frac{2h}{2l} - \frac{y_i}{y_i^2}}$$

$$= \frac{320 \quad 100}{1 + \frac{2 \quad 180}{2 \, l} \quad \frac{1200}{216000}}$$

 $= 27.87 \cdot 10^3 \text{ kNmm}$

b) Tensile force in the critical bolt,

$$T_b = \frac{M y_n}{y_i^2} = \frac{27.87 \cdot 10^3}{216000} = 30.96 \text{ kN}$$

c) Shear force in the critical bolt,

$$V_{sb} = \frac{P}{Number of bolts} = \frac{320}{2.5} = 32 \text{ kN}$$

Step 6 : Check :

$$\frac{V_{sb}}{V_{dsb}}^2 - \frac{T_b}{V_{db}}^2 - 1$$

Strength of bolt in tension, $T_{db} = \frac{T_{nb}}{mb}$

$$T_{nb} = 0.9 f_{ub} A_{nb}$$

= 0.9 400 353 $10^{-3} = 127.08 \text{ kN}$
| $f_{yb} = \frac{mb}{m0} A_{sb}$
= 240 $\frac{1.25}{1.10}$ 452 $10^{-3} = 123.27 \text{ kN}$

Hence, $T_{nb} = 123.27 \text{ kN}$

and
$$T_{db} = \frac{123.27}{1.25} = 98.61 \text{ kN}$$

$$\frac{32}{65.22} \quad \frac{30.96}{98.61} \quad ^{2} = 0.339$$

$$< 1.0$$

which is it should be.

Q.16 Solve Q.15 with welded connection.

Ans.:

For Fe 410 grade of steel : $f_u = 410 \text{ MPa}$

Partial safety factor for shop welding: mw = 1.25

Step 1: The calculation for the required bearing length and its value will remain same as that in design with bolted connection and will be 178.82 mm.

Provide a seat plate of 180 mm length.

The width of the seat plate > width of beam flange = $(b_f = 140 \text{ mm})$

Hence, provide width of seat plate = 160 mm. Refer to Fig. Q.16.1 (a).

The thickness of seat plate | thickness of the beam flange (14.2)

$$t_f = 14.2 \text{ mm}$$

Provide a seat plate 180 × 160 × 16 mm in size.

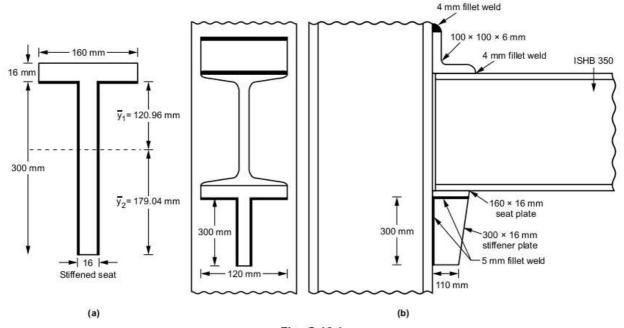


Fig. Q.16.1

Step 2 : Stiffening plate :

Thickness of stiffening plate | thickness of beam web (8.1 mm)

$$t_w = 8.1 \text{ mm}$$

Provide 16 mm thick stiffening plate.

Distance of end reaction from the outer edge of seat plate = $180 - \frac{178.82}{2} = 90.59$ mm

Bending moment

$$= 320 \times 90.59 = 28,988.8 \text{ Nmm}$$

Depth of stiffener plate can be determined from buckling criteria.

$$\frac{d}{t}$$
 < 18.9
d < 18.9 × 16 = **302.4** mm

Hence, adopt depth of stiffener plate 300 mm.

Provide a stiffener plate 300 × 16 mm. Refer to Fig. Q.16.1(a). Provide fillet weld to connect stiffener as shown in Fig. Q.16.1.

$$\overline{y}_1 = \frac{2 (300 t_1) 150 + 0}{2 300 t_1 + (160 - 16) t_1}$$

$$= 120.96 \text{ mm}$$
 $\overline{y}_2 = 300 - 120.96 = 179.04 \text{ mm}$

Assuming unit weld thickness,

Ixx of weld group

=
$$(160-16)$$
 t₁ $120.96^2 + 2$ $\frac{300^3}{12}$ t₁
+2 300 t₁ $179.04 - \frac{300}{2}$ ²
= 711.29 10^4 t₁ mm⁴

Vertical shear/mm,

$$q_1 = \frac{320 \cdot 10^3}{2 \cdot 300 \cdot t_1 + (160 - 16)t_1}$$
$$= \frac{430.10}{t_1} \text{ N/mm}$$

Horizontal shear/mm,

$$q_2 = \frac{28988.8 \cdot 10^3 \cdot 120.96}{711.29 \cdot 10^4 \cdot t_1} = \frac{492.98}{t_1} \text{ N/mm}$$

Resultant stress,
$$q_r = \sqrt{q_1^2 - q_2^2}$$

$$= \sqrt{\frac{430.10}{t_1}}^2 - \frac{492.98}{t_1}^2$$

$$= \frac{654.23}{t_1} \text{ N/mm}$$

$$\frac{654.23}{t_1} = \frac{f_u}{\sqrt{3}_{mw}} = \frac{410}{\sqrt{3}_{1.25}}$$

$$t_1 = 3.455 \text{ mm}$$

Size of weld S =
$$\frac{3.455}{0.7}$$
 = 4.935 mm 5 mm

Provide 5 mm fillet weld.

Provide a nominal size flange cleat angle **ISA** 100 × 100 × 6 mm and connect it by 5 mm fillet weld as shown in Fig. Q.16.1(b).

Q.17 Design a seat connection for the factored beam end reaction of 110 kN. The beam section is ISMB 250 @ 365.9 N/m connected to the flange of column section ISHB200 @ 365.9 N/m using bolted connection. Steel is of 410 and bolts are of grade 4.6.

Ans. : Given Data :

For Fe 410 grade of steel : $f_u = 410$ MPa, $f_{vw} = 250$ MPa

For bolts of grade $4.6: f_{ub} = 400 \text{ MPa}$

Partial safety factor for material of bolt : mb = 1.25

Partial safety factor for material: $_{m0} = 1.10$

Step 1: The relevant properties of the sections to be connected, from are:

Property	ISMB 250	ISHB 300
Width of flange, b _f	125 mm	200 mm
Thickness of flange, t _f	12.5 mm	9.00 mm
Thickness of web, t _w	6.9 mm	6.1 mm
Gauge, g	65 mm	55 mm
Radius at the root, R ₁	13 mm	

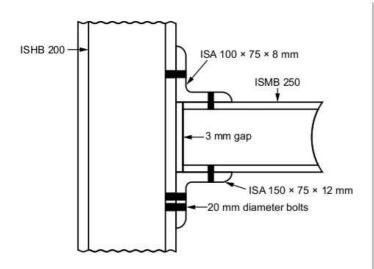


Fig. Q.17.1

The length of seat angle, B = width of beam flange = 125 mm, (b_f = 125 mm)

Bearing length of the seat leg,

$$b = \frac{R}{t_w} \frac{m0}{f_{yw}} = \frac{110 \cdot 10^3}{6.9} \cdot \frac{1.10}{250}$$
$$= 70.14 \text{ mm}$$

- Let us provide an angle section with leg length of 75 mm.
- Provide a clearance of 3 mm between the beam and the column flange.
- Required length of outstanding leg = 70.14 + 3
 = 73.14 mm < 75 mm which is all right.

Length of bearing on seat, $b_1 = b - (t_1 R_1)$

$$b_1 = 70.14 - (12.5 \ 13) = 44.64 \ \text{mm}$$

The reaction of 110 kN may be assumed to be distributed uniformly over the bearing length of 44.64 mm.

• Let us try a seat angle 150 × 75 × 12 mm.

Radius at the root of the seat angle, $R_a = 10 \text{ mm}$

The distance of end of bearing on seat to root of angle,

$$b_2 = b_1 + c - (t_a \quad R_a) = 44.64 + 3 - (12 + 10)$$

= 25.64 mm

Step 2:

a) Moment at the critical section,

$$M = R \frac{b_2}{b_1} \frac{b_2}{2}$$
$$= 110 \frac{25.64}{44.64} \frac{25.64}{2} = 809.98 \text{ kNmm}$$

b) Moment capacity of the angle leg,

$$M_{d} = 1.2 Z_{e} \frac{f_{y}}{m0}$$

$$= 1.2 \frac{125 \cdot 12^{2}}{6} \frac{250}{1.10} \cdot 10^{-3}$$

= 818.18 kNmm > 809.98 kNmm

which is as it should be.

Hence, provide a seat angle 150 × 75 × 12 mm.

c) Shear capacity of the outstanding leg (seating leg),

$$V_{dp} = Bt_a \frac{f_y}{\sqrt{3}}_{m0}$$

= 125 12 $\frac{250}{\sqrt{3} + 1.10} = 196.82 \text{ kN}$

> 110 kN

which is all right.

Step 3 : Connection of seat angle leg with the column flange :

Let us provide 20 mm diameter 4.6 grade bolts. The bolts will be in single shear and bearing, $A_{nb} = 245 \text{ mm}^2 \text{(From Table 5.1)}$

a) Strength of the bolt in single shear,

$$V_{dsb} = A_{nb} \frac{f_{ub}}{\sqrt{3}}$$

$$= 245 \frac{400}{\sqrt{3}} \frac{1.25}{1.25} 10^{-3} = 45.26 \text{ kN}$$

Number of bolts required, $n = \frac{110}{45.26} = 2.43 \approx 4$.

- Provide 20 mm diameter bolts of grade 4.6, 4 in numbers, in two rows at a pitch of 60 mm.
- Provide 20 mm diameter bolts of grade 4.6, 2 in numbers to connect seat leg with the beam flange.

- Provide a nominal cleat angle ISA 100 × 75 × 8 mm over the top of the beam flange.
- Connect the legs of this angle with the flanges of beam and column with two 20 mm diameter bolts each.

Q.18 A simply supported steel joist of 4 m effective span is laterally supported throughout. It carries a total uniformly distributed load of 40 kN inclusive of self weight. Design an appropriate section using steel of grade Fe410. Sketch the details of the section.

Ans. : Given data :

Effective span = 4 m = 4000 mm

Total UDL = 40 kN/m

Factored UDL = $40 \times 1.5 = 60 \text{ kN/m}$

· For steel of grade Fe410,

$$f_v = 250 \text{ MPa}, \quad f_u = 410 \text{ MPa}$$

1) Maximum Bending moment and Shear force :

i)
$$M = \frac{wL^2}{8} = \frac{60 \cdot 4^2}{8} = 120 \text{ kN} - \text{m}$$

ii)
$$V = \frac{wL}{2} = \frac{60}{2} = 120 \text{ kN}$$

2) Trial section:

$$Z_{p(req)} = \frac{M_{m0}}{f_y} = \frac{120 \cdot 10^6 \cdot 1.1}{250}$$

= 528 \quad 10^3 \quad mm^3

Let us try, ISLB200 @ 370 N/m.

The properties of a section,

$$h = 300 \text{ mm}$$
 $b_f = 150 \text{ mm}$
 $t_f = 9.4 \text{ mm}$
 $d = h-2(t_f + r_1) = 300-2(9.4+15)$
 $= 251.2 \text{ mm}$
 $t_w = 6.7$
 $I_{zz} = 7332.9 \cdot 10^4 \text{ mm}^4$
 $Z_e = 488 \cdot 10^3 \text{ mm}^3$

 $Z_p = 554.3 \cdot 10^3 \text{ mm}^3$

3) Section classification:

$$= \sqrt{\frac{250}{f_y}} = \sqrt{\frac{250}{250}} = 1$$

$$b = \frac{b_f}{2} = \frac{150}{2} = 75 \text{ mm}$$

$$\frac{b}{t_f} = \frac{75}{9.4} = 7.98 < 9.4$$

$$\frac{d}{t_w} = \frac{251.2}{6.7} = 37.49 < 84$$

Hence, section is a plastic section.

4) Check for shear capacity:

Design shear force = Maximum shear force

$$V = 120 \text{ kN}$$

· Design shear strength of section,

$$V_{d} = \frac{f_{y}}{\sqrt{m0}} \quad h \quad t_{w}$$

$$= \frac{250}{\sqrt{1.1}} \quad 300 \quad 6.7 \quad 10^{-3}$$

$$= 263.744 \text{ kN} > 120 \text{ kN}$$

Hence, safe in shear.

Check for high / low shear:

$$0.6 V_d = 0.6 263.744 = 158.25 kN > 120 kN$$

Hence, safe in low shear.

5) Check for design bending strength:

Since section is plastic, $_{\rm b}$ = 1

Design bending strength,

$$M_d = {}_b Z_p \frac{f_y}{m0}$$

= 1 554.3 10³ $\frac{250}{1.1}$ 10⁻⁶ = 125.98 kN.m
1.2 $Z_e \frac{f_y}{m0}$ = 1.2 488 10³ $\frac{250}{1.1}$ 10⁻⁶
= 133.09 kN.m

Hence, section is safe for maximum bending moment.

6) Check for deflection:

• Permissible deflection,

$$= \frac{l}{300} = \frac{4000}{300} = 13.33 \text{ mm}$$

· Maximum actual deflection,

$$cal = \frac{5}{384} \frac{wl^3}{EI}$$
$$= \frac{5}{384} \frac{120 \cdot 10^3 \cdot 4000^3}{2 \cdot 10^5 \cdot 7332.9 \cdot 10^4}$$

= 6.82 mm < 13.33 mm

Hence, section is safe against deflection.

Q.19 Determine the safe load P that can be carried by the joint shown in Fig. Q.19.1. The bolts used are 20 mm diameter of grade 4.6. The thickness of the flange of I - section is 9.1 mm and that of bracket plate 10 mm.

[JNTU: May-16, Marks 10]

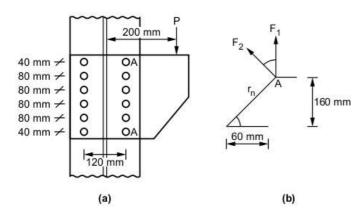


Fig. Q.19.1

Ans.:

For Fe 410 grade of steel : $f_u = 410 \text{ MPa}$

For bolts of grade 4.6: $f_{ub} = 400 \text{ MPa}$

Partial safety factor for the material of bolt : $_{mb} = 1.25$

 A_{nb} = Stress area of 20 mm diameter bolt = 245 mm² (From Table 5.1)

1) **Given**: Diameter of bolt, d = 20 mm; pitch, p = 80 mm; edge distance, e = 40 mm, For d = 20 mm,

$$d_0 = 20 + 2 = 22$$
 mm.

a) Strength of the bolt in single shear,

$$V_{dsb} = A_{nb} \frac{f_{ub}}{\sqrt{3}}_{mb}$$

= 245
$$\frac{400}{\sqrt{3}}$$
 1.25 10^{-3} = 45.26 kN

b) Strength of the bolt in bearing,

$$V_{dpb} = 2.5 k_b dt \frac{f_u}{mb}$$

From Table 5.3, for 20 mm diameter bolt the diameter of bolt hole, $d_0 = 22$ mm

$$k_b$$
 is at least of $\frac{e}{3 d_0} = \frac{40}{3 22} = 0.606$;

$$\frac{p}{3d_0} - 0.25 = \frac{80}{322} - 0.25 = 0.96;$$

$$\frac{f_{ub}}{f_{11}} = \frac{400}{410} = 0.975$$
; and 1.0

Hence, $k_b = 0.606$

$$V_{dpb} = 2.5 \ 0.606 \ 20 \ 9.1 \ \frac{410}{1.25} \ 10^{-3}$$

= 90.44 kN

Hence, strength of the bolt, V_{sd} = 45.26 kN

Let, P₁ be the factored load,

Service load,
$$P = \frac{P_1}{Load factor} = \frac{P_1}{1.50}$$

The bolt which is stressed maximum is A.

Total number of bolts in the joint, n = 10

2) The direct force,
$$F_1 = \frac{P_1}{n} = \frac{P_1}{10}$$

The force in bolt due to torque,

$$F_{2} = \frac{Pe_{0} r_{n}}{r^{2}}$$

$$r_{n} = \sqrt{(80 80)^{2} \frac{120^{2}}{2}} = 170.88 \text{ mm}$$

$$r^{2} = 4 [(160^{2} 60^{2}) (80^{2} 60^{2})] 2 60^{2}$$

$$= 164,000 \text{ mm}^{2}$$

$$F_{2} = \frac{P_{1} 200 170.88}{164000} = 0.20839 P_{1}$$

$$\cos = \frac{60}{\sqrt{60^{2} 160^{2}}} = 0.3511$$

The resultant force on the bolt should be less han or equal to the strength of bolt.

$$P_1 = 173.49 \text{ kN}$$

The service load,

$$P = \frac{P_1}{Load factor} = \frac{173.49}{1.5} = 115.65 \text{ kN}$$

Q.20 Design a laterally supported beam of effective span 6 m for the following data. Grade of steel = Fe410.

Maximum bending moment M=150 kNmMaximum shear force V=210 kNCheck for deflection is not required.

[JNTU: May-17, Marks 10]

Ans. : Given data :

- 1) Effective span = 6 m
- 2) Maximum BM = 150 kN/m

Factored BM = $1.5 \times 150 = 225 \text{ kN/m}$

3) Maximum shear force = 210 kN

Factored SF = $1.5 \times 210 = 315 \text{ kN/m}$

- 4) For Fe410, $f_v = 250 \text{ MPa}$
- To design a laterally supported beam,

I)
$$Z_{p(req)} = \frac{M_{m0}}{f_y} = \frac{225 \cdot 10^6 \cdot 1.1}{250}$$

= 990 \quad 10^3 \quad \text{mm}^3

Let us try, ISLB400 @ 558 N/m.

II) Properties of section:

Depth of section h = 400 mm

Width of flange, $b_f = 165 \text{ mm}$

Thickness of flange, $t_f = 12.5 \text{ mm}$

Thickness of web, $t_w = 8 \text{ mm}$

$$d = h-2(t_f + r_1) = 400-2(12.5+16)$$

$$= 343 \text{ mm}$$

$$I_{zz} = 19305.3 \cdot 10^4 \text{ mm}^4$$

$$Z_e = 965.3 \cdot 10^3 \text{ mm}^3$$

 $Z_p = 1099 \cdot 10^3 \text{ mm}^3$

III) Section classification:

$$= \sqrt{\frac{250}{f_y}} = \sqrt{\frac{250}{250}} = 1$$

$$b = \frac{b_f}{2} = \frac{165}{2} = 82.5 \text{ mm}$$

$$\frac{b}{t_f} = \frac{82.5}{12.5} = 6.6 < 9.4$$

$$\frac{d}{t_f} = \frac{343}{8} = 42.87 < 84$$

Hence, section is a plastic section.

• Factored self weight of beam = 1.5×0.558

$$= 0.837 \text{ kN/m}$$

Total maximum BM =
$$\frac{w l^2}{8}$$
 225
= $\frac{0.837 6^2}{8}$ 225 = 228.77 kN.m

IV) Plastic section modulus required:

$$Z_p = \frac{M_{m0}}{f_y} = \frac{228.77 \cdot 10^6 \cdot 1.1}{250}$$

= 1006.59 \quad 10^3 \text{ mm}^3
\leq 1099.5 \quad 10^3 \text{ mm}^3

Hence OK.

• Design shear force :

Shear force (v) =
$$\frac{w l}{2}$$
 315
= $\frac{0.837 \ 6}{2}$ 315
= 317.51 kN

· Design shear strength of section,

$$V_d = \frac{f_y}{\sqrt{m_0}} h t_w = \frac{250}{\sqrt{1.1}} 400 8$$

= 419.89 kN > 317.51 kN

Hence, OK.

V) Check for design capacity of section :

$$\frac{d}{t_{w}} = \frac{343}{8} = 42.87 < 67$$

$$\begin{split} M_{d} &= {}_{b} \ Z_{p} \ \frac{f_{y}}{m0} \\ M_{d} &= \frac{1 \ 1099 \ 10^{3} \ 250}{1.1} \\ &= 249.772 \ kN.m \\ M_{d} &= \frac{1.2 \ Z_{e} \ f_{y}}{m0} \ \frac{1.2 \ 965.3 \ 10^{3} \ 250}{1.1} \\ &= 263.26 \ kN.m \\ M_{d} &= 249.77 \ kN.m > 263.26 \ kN \end{split}$$

Hence OK.

Q.21 A simply supported steel of 5 m effective span is laterally supported throughout. It carries a total uniformly distributed load of 50 kN (including self-weight). Design an appropriate section using steel grade Fe410.

□ [JNTU: May-17, Marks 10]

Ans.: Given Data:

- I) Span = 5 m = 5000 mm
- II) Total uniformly distributed load = 50 kN

Total factored load = 75 kN

III) For Fe 415 grade of steel,

$$f_v = 250 \text{ MPa}$$

IV) Partial safety factors,

$$m_0 = 1.1, f = 1.50$$

1) Maximum bending moment and shear force :

i)
$$M = \frac{wl^2}{8} = \frac{75}{8} = 234.375 \text{ kN} - \text{m}$$

ii)
$$V = \frac{wl}{2} = \frac{75}{2} = 187.5 \text{ kN}$$

Maximum section modulus required,

$$Z_{p(req)} = \frac{M_{m0}}{f_v} = \frac{234.375 \ 1.1 \ 10^6}{250}$$

$$Z_{p(req)} = 1031.25 \ 10^3 \ mm^3$$

Let us try, ISLB400 @ 558 N/m.

2) Properties of Section:

Depth of section h = 400 mm

Width of flange, $b_f = 165 \text{ mm}$

Thickness of flange, $t_f = 12.5 \text{ mm}$

Thickness of web, $t_w = 8 \text{ mm}$

$$d = h-2(t_f + r_1)$$

$$= 400-2(12.5+16)$$

$$= 343 \text{ mm}$$

$$I_{zz} = 19305.3 \cdot 10^4 \text{ mm}^4$$

$$Z_e = 965.3 \cdot 10^3 \text{ mm}^3$$

$$Z_p = 1099.5 \cdot 10^3 \text{ mm}^3$$

3) Section classification:

$$= \sqrt{\frac{250}{f_y}} = \sqrt{\frac{250}{250}} = 1$$

$$b = \frac{b_f}{2} = \frac{165}{2} = 82.5 \text{ mm}$$

$$\frac{b}{t_f} = \frac{82.5}{12.5} = 6.6 < 9.4$$

$$\frac{d}{t_{tot}} = \frac{343}{8} = 42.87 < 84$$

Hence, section is a plastic section.

4) Check for shear force :

Design shear force :

Shear force (v) =
$$\frac{w l}{2}$$

= $\frac{50.837 5}{2}$ = 127.09 kN

· Design shear strength of section,

$$V_{d} = \frac{f_{y}}{\sqrt{m0}} \quad h \quad t_{w}$$

$$= \frac{250}{\sqrt{1.1}} \quad 400 \quad 8$$

$$= 419.89 \text{ kN} > 127.09 \text{ kN} \qquad ...OK$$

5) Check for design capacity of section :

$$\frac{d}{t_w} = \frac{343}{8} = 42.87 < 67$$

$$M_d = {}_b Z_p \frac{f_y}{m^0}$$

(b = 1, since section is plastic)

$$M_d = \frac{1 \cdot 1099.5 \cdot 10^3 \cdot 250}{1.1}$$

= 249.88 kN.m

$$M_d = \frac{1.2 \quad Z_e \quad f_y}{m^0} = \frac{1.2 \quad 965.3 \quad 10^3 \quad 250}{1.1}$$

= 263.26 kN.m

 $M_d = 249.88 \text{ kN.m} > 263.26 \text{ kN}$

6) Check for deflection:

$$cal = \frac{5}{384} \frac{wl^3}{EI}$$

$$= \frac{5}{384} \frac{5}{2} \frac{50000^4}{19305.3 \cdot 10^4}$$

 $_{cal}$ = 10.54 mm

· Allowable maximum deflection,

$$allow = \frac{l}{300} = \frac{5000}{300} = 16.67 \text{ mm}$$
 $cal < allow$

Hence, the design is safe.

Review Questions

- 1. Give general requirements for plastic design.
- 2. Explain the theorems of plastic analysis.
- 3. Explain the behaviour of Beam in flexure or moment.
- 4. What do you understand laterally restrained beams? Explain with diagram?

[JNTU: May-17, Marks 2]

Fill in the Blanks for Mid Term Exam

- Q.1 Purlins as per S800 2007 are designed as
- The imperfection factor () for welded steel Q.2 section is _____.
- Beam column is a member which subjected to Q.3 both action (i) as well as (ii).
- Lateral buckling of beam involves three kinds Q.4 of deformations namely ____, ____ and ____.

The problem of web crippling in beams is Q.5 significant when _____.

Multiple Choice Questions for Mid Term Exam

- Q.1 The maximum permissible deflection of steel beams in buildings other than industrial building is limited to ____
 - a Span/250
- b Span/300
- c Span/180
- d Span/500
- A section is required to be designed as high Q.2 shear case in case factored shear force is _____.
 - a less than $0.6\,\mathrm{V_d}$
- b more than $0.6\,\mathrm{V_d}$
- c less than $0.4\,\mathrm{V_d}$
- d less than 0.8 V_d
- For an I-Beam, web buckling is less critical Q.3 than flange buckling because _____.
 - a web can develop part buckling strength.
 - b edge conditions of flange are more favorable for buckling
 - c web is thicker than flange
 - d flange is thicker than web
- As per Indian standard codal requirements Q.4 beam should be __
 - a rolled to have maximum sectional modulus.
 - b plastic or at least about one axis.
 - c at least symmetrical about one axis.
 - d all of the above.
- Design bending strength of laterally supported Q.5 beam is given by ____.
 - $\begin{bmatrix} a \end{bmatrix} M_d = {}_b Z_p f_{bd}$
- $M_d = \frac{b Z_p f_y}{m0}$
- $C M_d = b Z_e f_{bd}$ $M_d = b Z_e f_y$