ACE R25 - BoS Approved Syllabus

COMPUTATIONAL MATHEMATICS LAB (MA306PC/MA406PC)

(Using Python software)

B.Tech. II Year I Sem. CE, CSE(IOT), CSE(AI/ML), CSE (DS), IT &ME

B.Tech. II Year II Sem. CSE, ECE & EEE,

 $L\ T\ P\ C$

Pre-requisites: Matrices, Iterative methods and ordinary differential equations

3 0 0 3

Course Objectives: To learn

- 1. Solve problems of Eigen values and Eigen Vectors using Python/MATLAB.
- 2. Solution of Algebraic and Transcendental Equations using Python/MATLAB
- 3. Solve problems of Linear system of equations
- 4. Solve problems of First-Order ODEs Higher order linear differential equations with constant coefficients

Course outcomes: After learning the contents of this paper, the student must be able to

- 1. Develop the code to find the Eigen values and Eigen Vectors using Python/MATLAB.
- 2. Develop the code find solution of Algebraic and Transcendental Equations and Linear system of equations using Python/MATLAB
- 3. Write the code to solve problems of First-Order ODEs Higher order linear differential equations with constant coefficients

* Visualize all solutions Graphically through programmes

UNIT - I: Eigen values and Eigenvectors:

Programs:

- Finding real and complex Eigen values.
- Finding Eigen vectors.

UNIT-II: Solution of Algebraic and Transcendental Equations

Bisection method, Newton Raphson Method

Programs:

- Root of a given equation using Bisection method.
- Root of a given equation Newton Raphson Method.

UNIT-III: Linear system of equations:

Jacobi's iteration method and Gauss-Seidel iteration method

Programs:

- Solution of given system of linear equations using Jacobi's method
- Solution of given system of linear equations using Gauss-Seidel method

UNIT-IV: First-Order ODEs

Exact and non-exact equations, Applications: exponential growth/decay, Newton's law of cooling.

Programs:

- Solving exact and non-exact equations
- Solving exponential growth/decay and Newton's law of cooling problems

UNIT-V: Higher order linear differential equations with constant coefficients

Programs:

- Solving homogeneous ODEs
- Solving non-homogeneous ODEs

TEXT BOOKS:

- 1. Kenneth A. Lambert, The fundamentals of Python: First Programs, 2011, Cengage Learnings.
- 2. Think Python First Edition, by Allen B. Downey, Orielly publishing.
- 3. Introduction to Python Programming, William Mitchell, Povel Solin, Martin Novak et al., NC Lab Public Computing, 2012.
- 4. Introduction to Python Programming, ©Jacob Fredslund, 2007.

REFERENCE BOOKS:

- An Introduction to Python, John C. Lusth, The University of Alabama, 2011.
 Introduction to Python, ©Dave Kuhlman, 2008.