ACE R25- BoS Approved Syllabus

ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (MA201BS)

B.Tech. I Year II Sem. ECE, EEE, ME, CE, CSE, CSE(IOT), CSE(AI/ML), CSE (DS) & IT

LTPC

Pre-requisites: Mathematical Knowledge at pre-university level 3 0 0 3

Course Objectives: To learn

- 1. Methods of solving the differential equations of first and higher order.
- 2. Concept, properties of Laplace transforms.
- 3. Solving ordinary differential equations using Laplace transforms techniques.
- 4. The physical quantities involved in engineering field related to vector valued functions
- 5. The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course outcomes: After learning the contents of this paper, the student must be able to

- 1. Identify whether the given differential equation of first order is exact or not
- 2. Solve higher differential equation and apply the concept of differential equation to real world problems.
- 3. Use the Laplace Transforms techniques for solving Ordinary Differential Equations.
- 4. Evaluate the Line, Surface and Volume integrals and converting them from one to another

UNIT-I: First Order Ordinary Differential Equations

Exact differential equations – Equations reducible to exact differential equations – linear and Bernoulli's equations – Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling – Law of natural growth and decay.

UNIT-II: Ordinary Differential Equations of Higher Order

Higher order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax} , $\sin ax$, $\cos ax$, polynomials in x, $e^{ax}V(x)$ and x V(x) – Method of variation of parameters.

UNIT-III: Laplace Transforms

Laplace Transforms: Laplace Transform of standard functions – First shifting theorem – Laplace transforms of functions multiplied by 't' and divided by 't' – Laplace transforms of derivatives and integrals of function – Evaluation of integrals by Laplace transforms – Laplace transform of periodic functions – Inverse Laplace transform by different methods, convolution theorem (without proof). **Applications**: solving Initial value problems by Laplace Transform method.

UNIT-IV: Vector Differentiation

Vector point functions and scalar point functions – Gradient – Divergence and Curl – Directional derivatives – Vector Identities – Scalar potential functions – Solenoidal and Irrotational vectors.

UNIT-V: Vector Integration

Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016.

REFERENCE BOOKS

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition, Pearson, Reprint, 2002.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008
- 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.