

ACE
Engineering College
An Autonomous Institution

Ghatkesar, Hyderabad - 501 301, Telangana.

Approved by AICTE & Affiliated to JNTUH

NBA Accredited B.Tech Courses, Accorded NACC A-Grade

B.Tech. in COMPUTER SCIENCE AND ENGINEERING
Course Structure & Syllabus (R-25 Regulations)
Applicable from AY 2025-2026 Batch

I Year II Semester

S. No.	Course Code	Course Title	L	T	P	Credits
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	0	0	3
2.	PH202BS	Advanced Engineering Physics	3	0	0	3
3.	ME203ES	Engineering Drawing and Computer Aided Drafting	2	0	2	3
4.	EE204ES	Basic Electrical Engineering	3	0	0	3
5.	CS205ES	Data Structures	3	0	0	3
6.	PH206BS	Advanced Engineering Physics Lab	0	0	2	1
7.	CS207ES	Data Structures Lab	0	0	2	1
8.	CS208ES	Python Programming Lab	0	0	2	1
9.	EE209ES	Basic Electrical Engineering Lab	0	0	2	1
10.	CS210ES	IT Workshop	0	0	2	1
Total Credits			1	0	12	20

MA201BS: ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS**B.Tech. I Year II Sem.**

L	T	P	C
3	0	0	3

Pre-requisites: Mathematical Knowledge at pre-university level**Course Objectives:** To learn

1. Methods of solving the differential equations of first and higher order.
2. Concept, properties of Laplace transforms.
3. Solving ordinary differential equations using Laplace transforms techniques.
4. The physical quantities involved in engineering field related to vector valued functions
5. The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course outcomes: After learning the contents of this paper, the student must be able to

1. Identify whether the given differential equation of first order is exact or not
2. Solve higher differential equation and apply the concept of differential equation to real world problems.
3. Use the Laplace Transforms techniques for solving Ordinary Differential Equations.
4. Evaluate the Line, Surface and Volume integrals and converting them from one to another

UNIT-I: First Order Ordinary Differential Equations**8 L**

Exact differential equations - Equations reducible to exact differential equations - linear and Bernoulli's equations - Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling – Law of natural growth and decay.

UNIT-II: Ordinary Differential Equations of Higher Order**10 L**

Higher order linear differential equations with constant coefficients: Non-Homogeneous terms of the type \square^{ax} , $\sin \square$, $\cos \square$, polynomials in \square , $\square^{ax}\square(\square)$ and $\square \square(\square)$ - Method of variation of parameters.

UNIT-III: Laplace Transforms**10 L**

Laplace Transforms: Laplace Transform of standard functions – First shifting theorem – Laplace transforms of functions multiplied by 't' and divided by 't' – Laplace transforms of derivatives and integrals of function – Evaluation of integrals by Laplace transforms – Laplace transform of periodic functions – Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

UNIT-IV: Vector Differentiation**10 L**

Vector point functions and scalar point functions – Gradient – Divergence and Curl – Directional derivatives - Vector Identities - Scalar potential functions - Solenoidal and Irrotational vectors.

UNIT-V: Vector Integration**10 L**

Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications

TEXT BOOKS:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016.

REFERENCE BOOKS:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.

PH202BS: ADVANCED ENGINEERING PHYSICS**B.Tech. I Year II Sem.**

L	T	P	C
3	0	0	3

Pre-requisites: 10+2 Physics**Course Objectives:**

1. To study crystal structures, defects, and material characterization techniques like XRD and SEM.
2. To understand fundamental concepts of quantum mechanics and their applications in solids and nanomaterials.
3. To introduce quantum computing principles, quantum gates, and basic quantum algorithms.
4. To learn the properties and applications of magnetic and dielectric materials.
5. To explore the working and applications of lasers and fibre optics in modern technology.

Course Outcomes:

1. **CO1:** Analyze crystal structures, identify defects, and apply XRD and SEM techniques for material characterization.
2. **CO2:** Apply quantum mechanical principles to explain particle behaviour and energy band formation in solids.
3. **CO3:** Understand quantum computing concepts, use quantum gates, and explain basic quantum algorithms.
4. **CO4:** Classify magnetic and dielectric materials and explain their properties, synthesis, and applications.
5. **CO5:** Explain the principles of lasers and fibre optics and their applications in communication and sensing.

UNIT - I: Crystallography & Materials Characterization

Introduction: Unit cell, space lattice, basis, lattice parameters; crystal structures, Bravais lattices, packing factor: SC, BCC, FCC; Miller indices, inter-planar distance; defects in crystals (Qualitative): point defects, line defects, surface defects and volume defects. concept of nanomaterials: surface to volume ratio, X-ray diffraction: Bragg's law, powder method, calculation of average crystallite size using Debye Scherrer's formula, scanning electron microscopy (SEM): block diagram, working principle.

UNIT - II: Quantum Mechanics

Introduction, de-Broglie hypothesis, Heisenberg uncertainty principle, physical significance of wave function, postulates of quantum mechanics: operators in quantum mechanics, eigen values and eigen functions, expectation value; Schrödinger's time independent wave equation, particle in a 1D box, Bloch's theorem (qualitative), Kronig-Penney model (qualitative): E-k diagram, effective mass of electron, formation of energy bands, origin of bandgap, classification of solids, concept of discrete energy levels and quantum confinement in nanomaterials.

UNIT - III: Quantum Computing

Introduction, linear algebra for quantum computation, Dirac's Bra and Ket notation and their properties, Hilbert space, Bloch's sphere, concept of quantum computer, classical bits, Qubits, multiple Qubit system, quantum computing system for information processing, evolution of quantum systems, quantum measurements, entanglement, quantum gates, challenges and advantages of quantum computing over classical computation, quantum algorithms: Deutsch-Jozsa, Shor, Grover.

UNIT - IV: Magnetic and Dielectric Materials

Introduction to magnetic materials, origin of magnetic moment-classification of magnetic materials, hysteresis, Weiss domain theory of ferromagnetism, soft and hard magnetic materials, synthesis of ferrimagnetic materials using sol-gel method, applications: magnetic hyperthermia for cancer treatment, magnets for EV, Giant Magneto Resistance (GMR) device.

Introduction to dielectric materials, types of polarization (qualitative): electronics, ionic & orientation; ferroelectric, piezoelectric, pyroelectric materials and their applications: Ferroelectric Random-Access Memory (Fe-RAM), load cell and fire sensor.

UNIT - V: Laser and Fibre Optics

Introduction to laser, characteristics of laser, Einstein coefficients and their relations, metastable state, population inversion, pumping, lasing action, Ruby laser, He-Ne laser, CO₂ laser, semiconductor diode laser, applications: Bar code scanner, LIDAR for autonomous vehicle.

Introduction to fibre optics, total internal reflection, construction of optical fibre, acceptance angle, numerical aperture, classification of optical fibres, losses in optical fibre, applications: optical fibre for communication system, sensor for structural health monitoring.

TEXT BOOKS:

1. Walter Borchardt-Ott, *Crystallography: An Introduction*, Springer.
2. Charles Kittel, *Introduction to Solid State Physics*, John Wiley & Sons, Inc.
3. Thomas G. Wong, *Introduction to Classical and Quantum Computing*, Rooted Grove

REFERENCE BOOKS:

1. Jozef Gruska, *Quantum Computing*, McGraw Hill
2. Michael A. Nielsen & Isaac L. Chuang, *Quantum Computation and Quantum Information*, Cambridge University Press.
3. John M. Senior, *Optical Fiber Communications Principles and Practice*, Pearson Education Limited.

Useful Links

- <https://shijuinpallotti.wordpress.com/wp-content/uploads/2019/07/optical-fiber-communications-principles-and-pr.pdf>
- https://www.geokniga.org/bookfiles/geokniga-crystallography_0.pdf
- <https://dpbck.ac.in/wp-content/uploads/2022/10/Introduction-to-Solid-State-PhysicsCharles-Kittel.pdf>
- <https://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e4p.pdf>
- <https://www.fi.muni.cz/usr/gruska/qbook1.pdf>
- <https://profmcruz.wordpress.com/wp-content/uploads/2017/08/quantum-computation-and-quantum-information-nielsen-chuang.pdf>

ME203ES: ENGINEERING DRAWING AND COMPUTER AIDED DRAFTING**B.Tech. I Year II Sem.**

L	T	P	C
2	0	2	3

Course Objectives:

1. To introduce the fundamentals of engineering drawing and projection systems.
2. To develop skills in constructing orthographic, isometric, and sectional views.
3. To train students in interpreting and creating technical drawings using CAD tools.
4. To familiarize students with dimensioning standards and drafting conventions.
5. To bridge manual drafting techniques with computer-aided drafting practices.

Course Outcomes: At the end of the course, the student will be able to:

1. Understand and apply the principles of orthographic and isometric projections.
2. Create sectional views and dimensioned drawings using BIS standards.
3. Use CAD software to generate 2D engineering drawings.
4. Visualize and construct solid models from 2D views.
5. Interpret and produce engineering drawings of mechanical components and assemblies.
6. Demonstrate drafting skills for practical and industrial applications.

UNIT – I: Introduction to Engineering Graphics (Conventional)

Principles of Engineering Graphics and their Significance, Geometrical Constructions, Scales, Plain and Diagonal, Conic Sections including the Rectangular Hyperbola, General method only. Cycloid, Epicycloid and Hypocycloid.

UNIT - II: Orthographic Projections (Conventional and Computer Aided)

Principles of Orthographic Projections, Conventions, Projections of Points and Lines, Projections of Plane regular geometric figures. Auxiliary Planes. Computer aided orthographic projections, points, lines and planes. Introduction to Computer aided drafting, views, commands and conics.

UNIT – III: Projections of Regular Solids (Conventional and Computer Aided)

Auxiliary Views, Sections or Sectional views of Right Regular Solids, Prism, Cylinder, Pyramid, Cone, Auxiliary views, Computer aided projections of solids, sectional views

UNIT - IV: Section of Solids (Conventional):

Sectional views of Right Regular Solids-Prism, Cylinder, Pyramid, and Cone.

Development of Surfaces (Conventional): Prism and Cylinder - parallel line method, pyramid and cone-radial line method

UNIT – V: Isometric Projections (Conventional and Computer Aided)

Principles of Isometric Projection, Isometric Scale, Isometric Views, Conventions, Isometric Views of Lines, Plane Figures, Simple and Compound Solids, Isometric Projection of objects having non-isometric lines. Isometric Projection of Spherical Parts. Conversion of Isometric Views to Orthographic Views and Vice- versa, Conventions. Conversion of orthographic projection into isometric view.

Note:

1. The End Semester Examination will be in conventional mode.
2. CIE - I will be in conventional mode.
3. CIE - II will be using Computer.

TEXT BOOKS:

1. Engineering Drawing, N.D. Bhatt, Charotar, 54th Edition, 2023.
2. Engineering Drawing and graphics Using AutoCAD, T. Jeyapoovan and Vikas, S. Chand and company Ltd., 3rd Edition, 2010.

REFERENCE BOOKS:

1. Engineering Drawing, Basant Agrawal and C.M. Agrawal, McGraw Hill, 3rd Edition, 2019.
2. Engineering Graphics and Design, WILEY, John Wiley and Sons Inc, 3rd Edition, 2020.
3. Engineering Drawing, M. B. Shah and B.C. Rane, Pearson, 2nd Edition, 2009.
4. Engineering Drawing, N. S. Parthasarathy and Vela Murali, Oxford, 1st Edition, 2015.
5. Computer Aided Engineering Drawing, K. Balaveera Reddy, CBS Publishers, 2nd Edition, 2015.

EE204ES: BASIC ELECTRICAL ENGINEERING

B.Tech. I Year II Sem.

L T P C
3 0 0 3

Prerequisites: Mathematics

Course Objectives:

- To understand DC and Single & Three phase AC circuits
- To study and understand the different types of DC, AC machines and Transformers.
- To import the knowledge of various electrical installations and the concept of power, power factor and its improvement.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand and analyze basic Electrical circuits
- Study the working principles of Electrical Machines and Transformers
- Introduce components of Low Voltage Electrical Installations.

Course Objectives	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To understand DC and Single & Three phase AC circuits.	3	2	1		2	0	0	1	2	0	1	2
To study and understand the different types of DC, AC machines and Transformers.	3	2	1	1	3	0	0	0	2	0	1	1
To import the knowledge of various electrical installations and the concept of power, power factor and its improvement.	3	2	0		3	0	0	0	1	2	1	1

UNIT-I:

D.C. Circuits: Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

UNIT-II:

A.C. Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III:

Transformers: Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV:

Electrical Machines: Construction and working principle of dc machine, performance characteristics of dc shunt machine. Generation of rotating magnetic field, Construction and working of a three-phase induction motor, Significance of torque-slip characteristics. Single-phase induction motor, Construction and working. Construction and working of synchronous generator.

UNIT-V:

Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS:

1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019.
2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

REFERENCE BOOKS:

1. P. Ramana, M. Suryakalavathi, G.T. Chandrasheker, "Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
4. Abhijit Chakrabarti, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021.
5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989

CS205ES: DATA STRUCTURES**B.Tech. I Year I Sem.**

L	T	P	C
3	0	0	3

Prerequisites: A course on “Programming for Problem Solving**Course Objectives**

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms.

Course Outcomes

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.
- Understand fundamental data structures such as arrays, trees and graphs and their applications
- Compare different data structure approaches for problem solving based on performance trade-offs

UNIT – I

Introduction to Data Structures: Basic Terminology, Classification of Data Structures, Operation on Data Structures, abstract data types, selecting a Data Structure, Linear list – Introduction, singly linked list, Circular Linked Lists, Doubly Linked List, Stacks- Operations, Stack algorithm, Stack ADT, Stack applications, Queues- operations, Queue Algorithm, Queue ADT, Queue Applications.

UNIT - II

Trees: Introduction, Types of Trees, creating a Binary Tree from a General Tree, traversing a Binary Tree, Binary Search Trees (BST), BST Operations- Searching, Insertion and Deletion, BST ADT, BST Applications, Threaded Binary Trees, AVL Trees, Red -Black Trees, Splay Trees

UNIT – III

Multi way Search Trees: Introduction, B Trees, B Trees ADT, 2-3 Trees, 2-3- Tree, B* Tree, B+ Trees

Heaps: Binary Heaps, Binomial heaps, Fibonacci heaps, Comparison of Various Heaps, Applications

Searching: Introduction, Interpolation Search, Jump search

UNIT - IV

Graphs: Introduction, Directed Graphs, Bi connected Components, Representation of Graphs, Graph Traversal Algorithms, Graph ADT, Applications of Graphs

Sorting: Radix Sort, Heap sort, Shell Sort, Tree Sort,

UNIT – V

Hashing and Collision: Introduction, Hash Tables, Hash Functions, Different Hash Functions: Division Method, Multiplication Method, Mid-square Method, Folding Method; collisions: Collision Resolution by Open Addressing, Collision Resolution by Chaining

Files and their Organization: Introduction, Data hierarchy, File Attributes, Text and Binary Files, Basic File Operations, File Organization, Indexing

TEXTBOOKS:

1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan, Cengage Learning
2. Data Structure using C- Reema Thareja, 3rd Edition, Oxford University Press.

REFERENCE:

1. Data Structures using C - A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

PH206BS: ADVANCED ENGINEERING PHYSICS LAB**B.Tech. I Year II Sem.**

L	T	P	C
0	0	2	1

Course Objectives:

1. To provide practical exposure to advanced concepts in solid-state and modern physics.
2. To synthesize and study the physical properties of materials like semiconductors, ferromagnetic, and ferroelectric substances.
3. To perform semiconductor characterization using Hall effect and band gap experiments.
4. To explore the working principles of lasers and optical fibers through hands-on experiments.
5. To develop skills in data analysis, interpretation, and scientific reporting.

Course Outcomes:

1. **CO1:** Synthesize and analyze nanomaterials such as magnetite (Fe_3O_4) using chemical methods.
2. **CO2:** Determine key electrical, magnetic, and optical properties of semiconductors and other functional materials.
3. **CO3:** Characterize semiconductors using Hall effect and energy gap measurement techniques.
4. **CO4:** Demonstrate working knowledge of laser systems and optical fiber parameters through experimental study.
5. **CO5:** Apply scientific methods for accurate data collection, analysis, and technical report writing.

List of Experiments:

1. Synthesis of magnetite (Fe_3O_4) powder using sol-gel method.
2. Determination of energy gap of a semiconductor.
3. Determination of Hall coefficient and carrier concentration of a given semiconductor.
4. **Determination of magnetic field along the axis of the coil using Stewart-Gee's experiment.**
5. Study of B-H curve of a ferro magnetic material.
6. **Computation of Planck's constant using Photoelectric effect**
7. Determination of dielectric constant of a given material.
8. Determination of Curie's temperature of a given ferroelectric material.
9. A) Determination of wavelength of a laser using diffraction grating.
B) Study of V-I & L-I characteristics of a given laser diode.
10. A) Determination of numerical aperture of a given optical fibre.
B) Determination of bending losses of a given optical fibre.

Note: Any 8 experiments are to be performed.

CS207ES: DATA STRUCTURES LAB**B.Tech. I Year II Sem.**

L	T	P	C
0	0	2	1

Prerequisites: 1. A Course on “Programming for problem solving”.**Course Objectives:**

1. It covers various concepts of C programming language
2. It introduces searching and sorting algorithms
3. It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

1. Implement various linear data structures such as arrays, linked lists, stacks and queues in a programming language
2. Develop programs to manipulate non-linear data structures such as trees and graphs
3. Apply sorting, searching and hashing techniques for solving computational problems
4. Analyze the efficiency of algorithms through practice implementation
5. Demonstrate problem-solving skills by selecting suitable data structures for specific applications
6. Work effectively in a team environment to design, code and test data structure-based solutions.

List of Experiments

1. Write a program that uses functions to perform the following operations on singly linked list.:
i) Creation ii) Insertion iii) Deletion iv) Traversal
2. Write a program that uses functions to perform the following operations on doubly linked list.:
i) Creation ii) Insertion iii) Deletion iv) Traversal
3. Write a program that uses functions to perform the following operations on circular linked list.:
i) Creation ii) Insertion iii) Deletion iv) Traversal
4. Write a program that implement stack (its operations) using
i) Arrays ii) ADT
5. Write a program that implement Queue (its operations) using
i) Arrays ii) ADT
6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order
i) Radix Sort, ii) Heap sort, iii) Shell Sort, iv) Tree Sort
7. Write a program to implement the tree traversal methods (Recursive and Non-Recursive).
8. Write a program to implement
i) Binary Search tree ii) B Trees iii) B+ Trees iv) AVL trees v) Red - Black trees
9. Write a program to implement the graph traversal methods.
10. Write a program to implement the following Hash Functions: i) Division Method, ii) Multiplication Method, iii) Mid-square Method, iv) Folding Method

TEXT BOOKS:

1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
2. Data Structures using C - A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage Learning.

CS208ES: PYTHON PROGRAMMING LAB**B.Tech. I Year II Sem.**

L	T	P	C
0	0	2	1

Course Objectives:

- To install and run the Python interpreter
- To learn control structures.
- To Understand Lists, Dictionaries in python
- To Handle Strings and Files in Python

Course Outcomes: After completion of the course, the student should be able to

- Understand Python basics
- Develop the application specific codes using python.
- Understand Strings, Lists, Tuples and Dictionaries in Python
- Verify programs using modular approach, file I/O, Python standard library
- Implement Digital Systems using Python
- Understand object-oriented program concepts

Note: The lab experiments will be like the following experiment examples.

List of Experiments:

1.
 - I. Use a web browser to go to the Python website <http://python.org>. This page contains information about Python and links to Python-related pages, and it gives you the ability to search the Python documentation.
 - II. Start the Python interpreter and type `help()` to start the online help utility.
2. Start a Python interpreter and use it as a Calculator.
3. Write a program to calculate compound interest when principal, rate and number of periods are given.
4. Read the name, address, email and phone number of a person through the keyboard and print the details.
5. Print the below triangle using for loop.


```

      5
      4 4
      3 3 3
      2 2 2 2
      1 1 1 1 1
      
```
6. Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character(use 'if-else-if' ladder)
7. Python program to print all prime numbers in a given interval (use break)
8. Write a program to convert a list and tuple into arrays.
9. Write a program to find common values between two arrays.
10. Write a function called `palindrome` that takes a string argument and returns True if it is a palindrome and False otherwise. Remember that you can use the built-in function `len` to check the length of a string.
11. Write a function called `is_sorted` that takes a list as a parameter and returns True if the list is sorted in ascending order and False otherwise.
12. Write a function called `has_duplicates` that takes a list and returns True if there is any element that appears more than once. It should not modify the original list.
13. Write a function called `remove_duplicates` that takes a list and returns a new list with only the unique elements from the original. Hint: they don't have to be in the same order.
14. The wordlist I provided, `words.txt`, doesn't contain single letter words. So you might want to add "I", "a", and the empty string.

15. Write a python code to read dictionary values from the user. Construct a function to invert its content. i.e., keys should be values and values should be keys.
16. Add a comma between the characters. If the given word is 'Apple', it should become 'A,p,p,l,e'
17. Remove the given word in all the places in a string?
18. Write a function that takes a sentence as an input parameter and replaces the first letter of every word with the corresponding upper case letter and the rest of the letters in the word by corresponding letters in lower case without using a built-in function?
19. Writes a recursive function that generates all binary strings of n-bit length
20. Write a python program that defines a matrix and prints
21. Write a python program to perform multiplication of two square matrices
22. How do you make a module? Give an example of construction of a module using different geometrical shapes and operations on them as its functions.
23. Use the structure of exception handling all general-purpose exceptions.
24. Write a function called draw rectangle that takes a Canvas and a Rectangle as arguments and draws a representation of the Rectangle on the Canvas.
25. Add an attribute named color to your Rectangle objects and modify draw rectangle so that it uses the color attribute as the fill color.
26. Write a function called draw point that takes a Canvas and a Point as arguments and draws a representation of the Point on the Canvas.
27. Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw circle that draws circles on the canvas.
28. Write a python code to read a phone number and email-id from the user and validate it for correctness.
29. Write a Python code to merge two given file contents into a third file.
30. Write a Python code to open a given file and construct a function to check for given words present in it and display on found.
31. Write a Python code to Read text from a text file, find the word with most number of occurrences
32. Write a function that reads a file *file1* and displays the number of words, number of vowels, blank spaces, lower case letters and uppercase letters.
33. Import numpy, Plotpy and Scipy and explore their functionalities.
34. Install NumPypackage with pip and explore it.
35. Write a program to implement Digital Logic Gates - AND, OR, NOT, EX-OR
36. Write a GUI program to create a window wizard having two text labels, two text fields and two buttons as Submit and Reset.

TEXT BOOKS:

1. Supercharged Python: Take your code to the next level, Overland
2. Learning Python, Mark Lutz, O'reilly

REFERENCE BOOKS:

1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
2. Python Programming A Modular Approach with Graphics, Database, Mobile, and Web Applications, Sheetal Taneja, Naveen Kumar, Pearson
3. Introduction to Python Programming, Gowrishakar S, Veena A, CRC Press
4. Programming with Python, A User's Book, Michael Dawson, Cengage Learning, India Edition
5. Python for Data Science, Dr. Mohd Abdul Hameed, Wiley publications
6. Core Python Programming, Dr. R. Nageswara Rao, Dreamtech press
7. Introduction to Python, Gowrishankar S, Veena A., CRC Press

EE209ES: BASIC ELECTRICAL ENGINEERING LAB**B.Tech. I Year II Sem.**

L	T	P	C
0	0	2	1

Prerequisites: Basic Electrical Engineering**Course Objectives:**

- To measure the electrical parameters for different types of DC and AC circuits using conventional and theorems approach.
- To study the transient response of various R, L and C circuits using different excitations.
- To determine the performance of different types of DC, AC machines and Transformers.

Course Outcomes: After learning the contents of this paper, the student must be able to

- Verify the basic Electrical circuits through different experiments.
- Evaluate the performance calculations of Electrical Machines and Transformers through various testing methods.
- Analyze the transient responses of R, L and C circuits for different input conditions.

Course Objectives	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To measure the electrical parameters for different types of DC and AC circuits using conventional and theorems approach	3	2	1		2	0	0	1	2	0	1	2
To study the transient response of various R, L and C circuits using different excitations	3	2	1	1	3	0	0	0	2	0	1	1
To determine the performance of different types of DC, AC machines and Transformers	3	2	0		3	0	0	0	1	2	1	1

Course Outcomes	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Verify the basic Electrical circuits through different experiments	3	2	1	0	1	0	0	0	2	0	2	2
Evaluate the performance calculations of Electrical Machines and Transformers through various testing methods	3	2	1	0	3	1	0	1	1	2	1	2

Analyse the transient responses of R, L and C circuits for different input conditions	3	2	1	1	3	2	0	0	1	0	2	2
---	---	---	---	---	---	---	---	---	---	---	---	---

List of experiments/demonstrations:**PART- A (compulsory)**

1. Verification of KVL and KCL
2. Verification of Thevenin's and Norton's theorem
3. Transient Response of Series RL and RC circuits for DC excitation
4. Resonance in series RLC circuit
5. Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits
6. Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer
7. Performance Characteristics of a DC Shunt Motor
8. Torque-Speed Characteristics of a Three-phase Induction Motor.

PART-B (any two experiments from the given list)

1. Verification of Superposition theorem.
2. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)
3. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
4. Measurement of Active and Reactive Power in a balanced Three-phase circuit
5. No-Load Characteristics of a Three-phase Alternator

TEXT BOOKS:

1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019.
2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

REFERENCE BOOKS:

1. P. Ramana, M. Suryakalavathi, G.T.Chandrasheker, "Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
4. Abhijit Chakrabarti, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021.
5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

CS210ES: IT WORKSHOP**B.Tech. I Year II Sem.**

L	T	P	C
0	0	2	1

Course Objectives: The IT Workshop for engineers is a training lab course spread over 60 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, PowerPoint and Publisher.

Course Outcomes:

- Perform Hardware troubleshooting
- Understand Hardware components and inter dependencies
- Safeguard computer systems from viruses/worms
- Document/ Presentation preparation
- Perform calculations using spreadsheets
- Identify and describe various networking concepts and devices

PC Hardware

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also, students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally, students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop-up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of LaTeX and MS office or equivalent (FOSS) tool Word as

word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using LaTeX and Word to create a project certificate. Features to be covered: - Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Task 3: Creating project abstract Features to be covered: -Formatting Styles, inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Task 4: Creating a Newsletter: Features to be covered: - Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2: Calculating GPA - Features to be covered: - Cell Referencing, Formulae in excel - average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

PowerPoint

Task 1: Students will be working on basic power point utilities and tools which help them create basic PowerPoint presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting -Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting - Background, textures, Design Templates, Hidden slides.

REFERENCE BOOKS:

1. Comdex Information Technology course tool kit Vikas Gupta, *WILEY Dreamtech*
2. The Complete Computer upgrade and repair book, 3rd edition Cheryl A Schmidt, *WILEY Dreamtech*
3. Introduction to Information Technology, ITL Education Solutions limited, *Pearson Education*.
4. PC Hardware - A Handbook - Kate J. Chase *PHI (Microsoft)*
5. LaTeX Companion - Leslie Lamport, *PHI/Pearson*.
6. IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme. – *CISCO Press, Pearson Education*.
7. IT Essentials PC Hardware and Software Labs and Study Guide Third Edition by Patrick Regan – *CISCO Press, Pearson Education*.